direct product, p-group, metabelian, nilpotent (class 3), monomial
Aliases: C2×C8.C8, C23.34M4(2), M5(2).22C22, (C4×C8).29C4, (C2×C8).14C8, C8.18(C2×C8), C8.46(C4⋊C4), C4.29(C4⋊C8), (C2×C8).63Q8, C8.26(C2×Q8), C4○(C8.C8), C8○(C8.C8), C8.136(C2×D4), (C2×C8).404D4, C22.7(C4⋊C8), (C22×C8).37C4, C4.28(C22×C8), (C2×C42).49C4, (C2×C8).605C23, (C4×C8).420C22, C42.329(C2×C4), (C2×C4).83M4(2), (C2×M5(2)).25C2, (C22×C8).580C22, C22.23(C2×M4(2)), (C2×C4×C8).50C2, C2.15(C2×C4⋊C8), C4.81(C2×C4⋊C4), (C2×C4).89(C2×C8), (C2×C8).252(C2×C4), (C2×C4).139(C4⋊C4), (C2×C4).560(C22×C4), (C22×C4).488(C2×C4), SmallGroup(128,884)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C8.C8
G = < a,b,c | a2=b8=1, c8=b4, ab=ba, ac=ca, cbc-1=b3 >
Subgroups: 108 in 84 conjugacy classes, 60 normal (34 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C8, C8, C2×C4, C2×C4, C23, C16, C42, C42, C2×C8, C2×C8, C22×C4, C22×C4, C4×C8, C2×C16, M5(2), M5(2), C2×C42, C22×C8, C8.C8, C2×C4×C8, C2×M5(2), C2×C8.C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C23, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C2×Q8, C4⋊C8, C2×C4⋊C4, C22×C8, C2×M4(2), C8.C8, C2×C4⋊C8, C2×C8.C8
(1 24)(2 25)(3 26)(4 27)(5 28)(6 29)(7 30)(8 31)(9 32)(10 17)(11 18)(12 19)(13 20)(14 21)(15 22)(16 23)
(1 15 13 11 9 7 5 3)(2 12 6 16 10 4 14 8)(17 27 21 31 25 19 29 23)(18 32 30 28 26 24 22 20)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
G:=sub<Sym(32)| (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,15,13,11,9,7,5,3)(2,12,6,16,10,4,14,8)(17,27,21,31,25,19,29,23)(18,32,30,28,26,24,22,20), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)>;
G:=Group( (1,24)(2,25)(3,26)(4,27)(5,28)(6,29)(7,30)(8,31)(9,32)(10,17)(11,18)(12,19)(13,20)(14,21)(15,22)(16,23), (1,15,13,11,9,7,5,3)(2,12,6,16,10,4,14,8)(17,27,21,31,25,19,29,23)(18,32,30,28,26,24,22,20), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32) );
G=PermutationGroup([[(1,24),(2,25),(3,26),(4,27),(5,28),(6,29),(7,30),(8,31),(9,32),(10,17),(11,18),(12,19),(13,20),(14,21),(15,22),(16,23)], [(1,15,13,11,9,7,5,3),(2,12,6,16,10,4,14,8),(17,27,21,31,25,19,29,23),(18,32,30,28,26,24,22,20)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)]])
56 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | ··· | 4N | 8A | ··· | 8H | 8I | ··· | 8T | 16A | ··· | 16P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 | 8 | ··· | 8 | 16 | ··· | 16 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 4 | ··· | 4 |
56 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | - | |||||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | C8 | D4 | Q8 | M4(2) | M4(2) | C8.C8 |
kernel | C2×C8.C8 | C8.C8 | C2×C4×C8 | C2×M5(2) | C4×C8 | C2×C42 | C22×C8 | C2×C8 | C2×C8 | C2×C8 | C2×C4 | C23 | C2 |
# reps | 1 | 4 | 1 | 2 | 4 | 2 | 2 | 16 | 2 | 2 | 2 | 2 | 16 |
Matrix representation of C2×C8.C8 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
1 | 0 | 0 |
0 | 2 | 0 |
0 | 0 | 8 |
13 | 0 | 0 |
0 | 0 | 1 |
0 | 9 | 0 |
G:=sub<GL(3,GF(17))| [16,0,0,0,16,0,0,0,16],[1,0,0,0,2,0,0,0,8],[13,0,0,0,0,9,0,1,0] >;
C2×C8.C8 in GAP, Magma, Sage, TeX
C_2\times C_8.C_8
% in TeX
G:=Group("C2xC8.C8");
// GroupNames label
G:=SmallGroup(128,884);
// by ID
G=gap.SmallGroup(128,884);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,-2,112,141,64,2019,248,102,124]);
// Polycyclic
G:=Group<a,b,c|a^2=b^8=1,c^8=b^4,a*b=b*a,a*c=c*a,c*b*c^-1=b^3>;
// generators/relations