direct product, p-group, metabelian, nilpotent (class 2), monomial
Aliases: C2×C4⋊C8, C42.10C4, C42.66C22, C22.10M4(2), C4○(C4⋊C8), (C2×C4)⋊3C8, C4⋊2(C2×C8), C4.71(C2×D4), C4.21(C4⋊C4), C4.20(C2×Q8), (C2×C4).25Q8, (C2×C4).146D4, C2.2(C22×C8), (C22×C8).6C2, C23.39(C2×C4), (C2×C42).13C2, (C22×C4).14C4, C22.10(C2×C8), (C2×C8).60C22, C2.4(C2×M4(2)), C22.18(C4⋊C4), (C2×C4).147C23, C22.21(C22×C4), (C22×C4).136C22, (C2×C4)○(C4⋊C8), C2.3(C2×C4⋊C4), (C2×C4).85(C2×C4), SmallGroup(64,103)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C2×C4⋊C8
G = < a,b,c | a2=b4=c8=1, ab=ba, ac=ca, cbc-1=b-1 >
Subgroups: 81 in 69 conjugacy classes, 57 normal (15 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C42, C2×C8, C2×C8, C22×C4, C4⋊C8, C2×C42, C22×C8, C2×C4⋊C8
Quotients: C1, C2, C4, C22, C8, C2×C4, D4, Q8, C23, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C2×Q8, C4⋊C8, C2×C4⋊C4, C22×C8, C2×M4(2), C2×C4⋊C8
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 49)(8 50)(9 23)(10 24)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 57)(32 58)(33 44)(34 45)(35 46)(36 47)(37 48)(38 41)(39 42)(40 43)
(1 59 23 40)(2 33 24 60)(3 61 17 34)(4 35 18 62)(5 63 19 36)(6 37 20 64)(7 57 21 38)(8 39 22 58)(9 43 51 25)(10 26 52 44)(11 45 53 27)(12 28 54 46)(13 47 55 29)(14 30 56 48)(15 41 49 31)(16 32 50 42)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,49)(8,50)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43), (1,59,23,40)(2,33,24,60)(3,61,17,34)(4,35,18,62)(5,63,19,36)(6,37,20,64)(7,57,21,38)(8,39,22,58)(9,43,51,25)(10,26,52,44)(11,45,53,27)(12,28,54,46)(13,47,55,29)(14,30,56,48)(15,41,49,31)(16,32,50,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)>;
G:=Group( (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,49)(8,50)(9,23)(10,24)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,57)(32,58)(33,44)(34,45)(35,46)(36,47)(37,48)(38,41)(39,42)(40,43), (1,59,23,40)(2,33,24,60)(3,61,17,34)(4,35,18,62)(5,63,19,36)(6,37,20,64)(7,57,21,38)(8,39,22,58)(9,43,51,25)(10,26,52,44)(11,45,53,27)(12,28,54,46)(13,47,55,29)(14,30,56,48)(15,41,49,31)(16,32,50,42), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,49),(8,50),(9,23),(10,24),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,57),(32,58),(33,44),(34,45),(35,46),(36,47),(37,48),(38,41),(39,42),(40,43)], [(1,59,23,40),(2,33,24,60),(3,61,17,34),(4,35,18,62),(5,63,19,36),(6,37,20,64),(7,57,21,38),(8,39,22,58),(9,43,51,25),(10,26,52,44),(11,45,53,27),(12,28,54,46),(13,47,55,29),(14,30,56,48),(15,41,49,31),(16,32,50,42)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)]])
C2×C4⋊C8 is a maximal subgroup of
C42.385D4 C42.46Q8 C42.3Q8 C42.25D4 C42.27D4 C42.8Q8 C42.389D4 C22.M5(2) C42.397D4 C42.45D4 C42.46D4 C42.47D4 C42.409D4 C42.410D4 C42.78D4 C42.79D4 C42.80D4 C42.81D4 M4(2)⋊1C8 C42.90D4 C42.91D4 C42.92D4 C43.7C2 C42.45Q8 C8×C4⋊C4 C4⋊C8⋊13C4 C4⋊C8⋊14C4 C42.425D4 C42.95D4 C42.98D4 C42.99D4 C42.100D4 C42.101D4 C42⋊8C8 C42.23Q8 C42⋊9C8 C42.25Q8 C23.21M4(2) (C2×C8).195D4 C4⋊C4⋊3C8 (C2×C8).Q8 C22⋊C4⋊4C8 C23.9M4(2) C42.61Q8 C42.27Q8 C42.29Q8 C42.30Q8 C42.31Q8 C42.430D4 C42.325D4 C42.109D4 C42.117D4 C42.118D4 C42.119D4 C42.327D4 C42.120D4 C42.121D4 C42.122D4 C42.123D4 (C2×C4)⋊3D8 (C2×C4)⋊5SD16 (C2×C4)⋊3Q16 C4⋊C4.106D4 (C2×Q8).8Q8 (C2×C4).23D8 (C2×C8).52D4 (C2×C4).26D8 (C2×C4).21Q16 C4.(C4⋊Q8) C42.674C23 C42.678C23 D4×C2×C8 M4(2)⋊23D4 Q8×C2×C8 M4(2)⋊9Q8 C42.697C23 C42.698C23 D4⋊8M4(2) C42.307C23 C42.309C23 C42.443D4 C42.447D4 C42.293D4 C42.294D4 C42.295D4 C42.296D4 C42.297D4 C42.298D4 C42.11F5
C2×C4⋊C8 is a maximal quotient of
C42.42Q8 M4(2)⋊1C8 C42.425D4 C42⋊8C8 C42⋊9C8 C23.21M4(2) C42.61Q8 C4⋊M5(2) C4⋊C4.7C8 M4(2).1C8 C42.11F5
40 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4H | 4I | ··· | 4P | 8A | ··· | 8P |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 |
type | + | + | + | + | + | - | ||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C8 | D4 | Q8 | M4(2) |
kernel | C2×C4⋊C8 | C4⋊C8 | C2×C42 | C22×C8 | C42 | C22×C4 | C2×C4 | C2×C4 | C2×C4 | C22 |
# reps | 1 | 4 | 1 | 2 | 4 | 4 | 16 | 2 | 2 | 4 |
Matrix representation of C2×C4⋊C8 ►in GL4(𝔽17) generated by
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 0 | 16 |
0 | 0 | 1 | 0 |
9 | 0 | 0 | 0 |
0 | 4 | 0 | 0 |
0 | 0 | 15 | 0 |
0 | 0 | 0 | 2 |
G:=sub<GL(4,GF(17))| [16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[16,0,0,0,0,16,0,0,0,0,0,1,0,0,16,0],[9,0,0,0,0,4,0,0,0,0,15,0,0,0,0,2] >;
C2×C4⋊C8 in GAP, Magma, Sage, TeX
C_2\times C_4\rtimes C_8
% in TeX
G:=Group("C2xC4:C8");
// GroupNames label
G:=SmallGroup(64,103);
// by ID
G=gap.SmallGroup(64,103);
# by ID
G:=PCGroup([6,-2,2,2,-2,2,-2,96,121,55,88]);
// Polycyclic
G:=Group<a,b,c|a^2=b^4=c^8=1,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations