# Extensions 1→N→G→Q→1 with N=C2 and Q=C2×M5(2)

Direct product G=N×Q with N=C2 and Q=C2×M5(2)
dρLabelID
C22×M5(2)64C2^2xM5(2)128,2137

Non-split extensions G=N.Q with N=C2 and Q=C2×M5(2)
extensionφ:Q→Aut NdρLabelID
C2.1(C2×M5(2)) = C2×C165C4central extension (φ=1)128C2.1(C2xM5(2))128,838
C2.2(C2×M5(2)) = C4×M5(2)central extension (φ=1)64C2.2(C2xM5(2))128,839
C2.3(C2×M5(2)) = C2×C22⋊C16central extension (φ=1)64C2.3(C2xM5(2))128,843
C2.4(C2×M5(2)) = C2×C4⋊C16central extension (φ=1)128C2.4(C2xM5(2))128,881
C2.5(C2×M5(2)) = C42.13C8central extension (φ=1)64C2.5(C2xM5(2))128,894
C2.6(C2×M5(2)) = C24.5C8central stem extension (φ=1)32C2.6(C2xM5(2))128,844
C2.7(C2×M5(2)) = C4⋊M5(2)central stem extension (φ=1)64C2.7(C2xM5(2))128,882
C2.8(C2×M5(2)) = C42.6C8central stem extension (φ=1)64C2.8(C2xM5(2))128,895
C2.9(C2×M5(2)) = C169D4central stem extension (φ=1)64C2.9(C2xM5(2))128,900
C2.10(C2×M5(2)) = C166D4central stem extension (φ=1)64C2.10(C2xM5(2))128,901
C2.11(C2×M5(2)) = C164Q8central stem extension (φ=1)128C2.11(C2xM5(2))128,915

׿
×
𝔽