Copied to
clipboard

G = C4×M5(2)  order 128 = 27

Direct product of C4 and M5(2)

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C4×M5(2), C82M5(2), C42.10C8, C8.17C42, C169(C2×C4), C4.5(C4×C8), (C4×C16)⋊14C2, (C4×C8).37C4, (C2×C8).18C8, C8.25(C2×C8), (C2×C8)M5(2), C8(C2×M5(2)), C42(C165C4), C82(C165C4), C165C414C2, C22.5(C4×C8), (C22×C8).46C4, (C2×C42).46C4, (C22×C4).10C8, C4.36(C2×C42), (C2×C4).73C42, C23.34(C2×C8), C8.66(C22×C4), C4.35(C22×C8), C2.2(C2×M5(2)), C42(C2×M5(2)), C42(C165C4), (C2×C8).621C23, C42.340(C2×C4), (C4×C8).442C22, (C2×C16).104C22, (C2×M5(2)).27C2, C22.24(C22×C8), (C22×C8).575C22, (C2×C4×C8).65C2, C2.11(C2×C4×C8), (C2×C4).99(C2×C8), (C4×C8)(C2×M5(2)), (C4×C8)(C165C4), (C2×C8).192(C2×C4), (C2×C4).606(C22×C4), (C22×C4).484(C2×C4), SmallGroup(128,839)

Series: Derived Chief Lower central Upper central Jennings

C1C2 — C4×M5(2)
C1C2C4C2×C4C2×C8C22×C8C2×C4×C8 — C4×M5(2)
C1C2 — C4×M5(2)
C1C4×C8 — C4×M5(2)
C1C2C2C2C2C4C4C2×C8 — C4×M5(2)

Generators and relations for C4×M5(2)
 G = < a,b,c | a4=b16=c2=1, ab=ba, ac=ca, cbc=b9 >

Subgroups: 108 in 98 conjugacy classes, 88 normal (24 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C16, C42, C42, C2×C8, C2×C8, C22×C4, C22×C4, C4×C8, C2×C16, M5(2), C2×C42, C22×C8, C4×C16, C165C4, C2×C4×C8, C2×M5(2), C4×M5(2)
Quotients: C1, C2, C4, C22, C8, C2×C4, C23, C42, C2×C8, C22×C4, C4×C8, M5(2), C2×C42, C22×C8, C2×C4×C8, C2×M5(2), C4×M5(2)

Smallest permutation representation of C4×M5(2)
On 64 points
Generators in S64
(1 63 20 36)(2 64 21 37)(3 49 22 38)(4 50 23 39)(5 51 24 40)(6 52 25 41)(7 53 26 42)(8 54 27 43)(9 55 28 44)(10 56 29 45)(11 57 30 46)(12 58 31 47)(13 59 32 48)(14 60 17 33)(15 61 18 34)(16 62 19 35)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
(1 20)(2 29)(3 22)(4 31)(5 24)(6 17)(7 26)(8 19)(9 28)(10 21)(11 30)(12 23)(13 32)(14 25)(15 18)(16 27)(33 52)(34 61)(35 54)(36 63)(37 56)(38 49)(39 58)(40 51)(41 60)(42 53)(43 62)(44 55)(45 64)(46 57)(47 50)(48 59)

G:=sub<Sym(64)| (1,63,20,36)(2,64,21,37)(3,49,22,38)(4,50,23,39)(5,51,24,40)(6,52,25,41)(7,53,26,42)(8,54,27,43)(9,55,28,44)(10,56,29,45)(11,57,30,46)(12,58,31,47)(13,59,32,48)(14,60,17,33)(15,61,18,34)(16,62,19,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,20)(2,29)(3,22)(4,31)(5,24)(6,17)(7,26)(8,19)(9,28)(10,21)(11,30)(12,23)(13,32)(14,25)(15,18)(16,27)(33,52)(34,61)(35,54)(36,63)(37,56)(38,49)(39,58)(40,51)(41,60)(42,53)(43,62)(44,55)(45,64)(46,57)(47,50)(48,59)>;

G:=Group( (1,63,20,36)(2,64,21,37)(3,49,22,38)(4,50,23,39)(5,51,24,40)(6,52,25,41)(7,53,26,42)(8,54,27,43)(9,55,28,44)(10,56,29,45)(11,57,30,46)(12,58,31,47)(13,59,32,48)(14,60,17,33)(15,61,18,34)(16,62,19,35), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64), (1,20)(2,29)(3,22)(4,31)(5,24)(6,17)(7,26)(8,19)(9,28)(10,21)(11,30)(12,23)(13,32)(14,25)(15,18)(16,27)(33,52)(34,61)(35,54)(36,63)(37,56)(38,49)(39,58)(40,51)(41,60)(42,53)(43,62)(44,55)(45,64)(46,57)(47,50)(48,59) );

G=PermutationGroup([[(1,63,20,36),(2,64,21,37),(3,49,22,38),(4,50,23,39),(5,51,24,40),(6,52,25,41),(7,53,26,42),(8,54,27,43),(9,55,28,44),(10,56,29,45),(11,57,30,46),(12,58,31,47),(13,59,32,48),(14,60,17,33),(15,61,18,34),(16,62,19,35)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)], [(1,20),(2,29),(3,22),(4,31),(5,24),(6,17),(7,26),(8,19),(9,28),(10,21),(11,30),(12,23),(13,32),(14,25),(15,18),(16,27),(33,52),(34,61),(35,54),(36,63),(37,56),(38,49),(39,58),(40,51),(41,60),(42,53),(43,62),(44,55),(45,64),(46,57),(47,50),(48,59)]])

80 conjugacy classes

class 1 2A2B2C2D2E4A···4L4M···4R8A···8P8Q···8X16A···16AF
order1222224···44···48···88···816···16
size1111221···12···21···12···22···2

80 irreducible representations

dim1111111111112
type+++++
imageC1C2C2C2C2C4C4C4C4C8C8C8M5(2)
kernelC4×M5(2)C4×C16C165C4C2×C4×C8C2×M5(2)C4×C8M5(2)C2×C42C22×C8C42C2×C8C22×C4C4
# reps1221241622816816

Matrix representation of C4×M5(2) in GL3(𝔽17) generated by

400
010
001
,
1300
001
020
,
100
010
0016
G:=sub<GL(3,GF(17))| [4,0,0,0,1,0,0,0,1],[13,0,0,0,0,2,0,1,0],[1,0,0,0,1,0,0,0,16] >;

C4×M5(2) in GAP, Magma, Sage, TeX

C_4\times M_5(2)
% in TeX

G:=Group("C4xM5(2)");
// GroupNames label

G:=SmallGroup(128,839);
// by ID

G=gap.SmallGroup(128,839);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,-2,-2,56,120,1430,136,124]);
// Polycyclic

G:=Group<a,b,c|a^4=b^16=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^9>;
// generators/relations

׿
×
𝔽