Extensions 1→N→G→Q→1 with N=C2×Q8 and Q=C10

Direct product G=N×Q with N=C2×Q8 and Q=C10

Semidirect products G=N:Q with N=C2×Q8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×Q8)⋊1C10 = C5×C22⋊Q8φ: C10/C5C2 ⊆ Out C2×Q880(C2xQ8):1C10160,183
(C2×Q8)⋊2C10 = C5×C4.4D4φ: C10/C5C2 ⊆ Out C2×Q880(C2xQ8):2C10160,185
(C2×Q8)⋊3C10 = C10×SD16φ: C10/C5C2 ⊆ Out C2×Q880(C2xQ8):3C10160,194
(C2×Q8)⋊4C10 = C5×C8.C22φ: C10/C5C2 ⊆ Out C2×Q8804(C2xQ8):4C10160,198
(C2×Q8)⋊5C10 = C5×2- 1+4φ: C10/C5C2 ⊆ Out C2×Q8804(C2xQ8):5C10160,233
(C2×Q8)⋊6C10 = C10×C4○D4φ: trivial image80(C2xQ8):6C10160,231

Non-split extensions G=N.Q with N=C2×Q8 and Q=C10
extensionφ:Q→Out NdρLabelID
(C2×Q8).1C10 = C5×C4.10D4φ: C10/C5C2 ⊆ Out C2×Q8804(C2xQ8).1C10160,51
(C2×Q8).2C10 = C5×Q8⋊C4φ: C10/C5C2 ⊆ Out C2×Q8160(C2xQ8).2C10160,53
(C2×Q8).3C10 = C5×C4⋊Q8φ: C10/C5C2 ⊆ Out C2×Q8160(C2xQ8).3C10160,189
(C2×Q8).4C10 = C10×Q16φ: C10/C5C2 ⊆ Out C2×Q8160(C2xQ8).4C10160,195
(C2×Q8).5C10 = Q8×C20φ: trivial image160(C2xQ8).5C10160,180