Copied to
clipboard

G = C5×C4.10D4order 160 = 25·5

Direct product of C5 and C4.10D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C5×C4.10D4, C20.59D4, M4(2).1C10, (C2×C4).C20, C4.10(C5×D4), (C2×C20).13C4, (C2×Q8).1C10, (Q8×C10).6C2, C22.4(C2×C20), (C2×C20).60C22, (C5×M4(2)).3C2, C10.34(C22⋊C4), (C2×C4).2(C2×C10), C2.5(C5×C22⋊C4), (C2×C10).41(C2×C4), SmallGroup(160,51)

Series: Derived Chief Lower central Upper central

C1C22 — C5×C4.10D4
C1C2C4C2×C4C2×C20C5×M4(2) — C5×C4.10D4
C1C2C22 — C5×C4.10D4
C1C10C2×C20 — C5×C4.10D4

Generators and relations for C5×C4.10D4
 G = < a,b,c,d | a5=b4=1, c4=b2, d2=cbc-1=b-1, ab=ba, ac=ca, ad=da, bd=db, dcd-1=b-1c3 >

2C2
2C4
2C4
2C10
2C8
2Q8
2C8
2Q8
2C20
2C20
2C40
2C40
2C5×Q8
2C5×Q8

Smallest permutation representation of C5×C4.10D4
On 80 points
Generators in S80
(1 63 71 23 31)(2 64 72 24 32)(3 57 65 17 25)(4 58 66 18 26)(5 59 67 19 27)(6 60 68 20 28)(7 61 69 21 29)(8 62 70 22 30)(9 74 50 34 46)(10 75 51 35 47)(11 76 52 36 48)(12 77 53 37 41)(13 78 54 38 42)(14 79 55 39 43)(15 80 56 40 44)(16 73 49 33 45)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 19 21 23)(18 24 22 20)(25 27 29 31)(26 32 30 28)(33 35 37 39)(34 40 38 36)(41 43 45 47)(42 48 46 44)(49 51 53 55)(50 56 54 52)(57 59 61 63)(58 64 62 60)(65 67 69 71)(66 72 70 68)(73 75 77 79)(74 80 78 76)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)
(1 36 7 38 5 40 3 34)(2 37 4 35 6 33 8 39)(9 71 11 69 13 67 15 65)(10 68 16 70 14 72 12 66)(17 74 23 76 21 78 19 80)(18 75 20 73 22 79 24 77)(25 50 31 52 29 54 27 56)(26 51 28 49 30 55 32 53)(41 58 47 60 45 62 43 64)(42 59 44 57 46 63 48 61)

G:=sub<Sym(80)| (1,63,71,23,31)(2,64,72,24,32)(3,57,65,17,25)(4,58,66,18,26)(5,59,67,19,27)(6,60,68,20,28)(7,61,69,21,29)(8,62,70,22,30)(9,74,50,34,46)(10,75,51,35,47)(11,76,52,36,48)(12,77,53,37,41)(13,78,54,38,42)(14,79,55,39,43)(15,80,56,40,44)(16,73,49,33,45), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,75,77,79)(74,80,78,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,36,7,38,5,40,3,34)(2,37,4,35,6,33,8,39)(9,71,11,69,13,67,15,65)(10,68,16,70,14,72,12,66)(17,74,23,76,21,78,19,80)(18,75,20,73,22,79,24,77)(25,50,31,52,29,54,27,56)(26,51,28,49,30,55,32,53)(41,58,47,60,45,62,43,64)(42,59,44,57,46,63,48,61)>;

G:=Group( (1,63,71,23,31)(2,64,72,24,32)(3,57,65,17,25)(4,58,66,18,26)(5,59,67,19,27)(6,60,68,20,28)(7,61,69,21,29)(8,62,70,22,30)(9,74,50,34,46)(10,75,51,35,47)(11,76,52,36,48)(12,77,53,37,41)(13,78,54,38,42)(14,79,55,39,43)(15,80,56,40,44)(16,73,49,33,45), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,19,21,23)(18,24,22,20)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44)(49,51,53,55)(50,56,54,52)(57,59,61,63)(58,64,62,60)(65,67,69,71)(66,72,70,68)(73,75,77,79)(74,80,78,76), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80), (1,36,7,38,5,40,3,34)(2,37,4,35,6,33,8,39)(9,71,11,69,13,67,15,65)(10,68,16,70,14,72,12,66)(17,74,23,76,21,78,19,80)(18,75,20,73,22,79,24,77)(25,50,31,52,29,54,27,56)(26,51,28,49,30,55,32,53)(41,58,47,60,45,62,43,64)(42,59,44,57,46,63,48,61) );

G=PermutationGroup([[(1,63,71,23,31),(2,64,72,24,32),(3,57,65,17,25),(4,58,66,18,26),(5,59,67,19,27),(6,60,68,20,28),(7,61,69,21,29),(8,62,70,22,30),(9,74,50,34,46),(10,75,51,35,47),(11,76,52,36,48),(12,77,53,37,41),(13,78,54,38,42),(14,79,55,39,43),(15,80,56,40,44),(16,73,49,33,45)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,19,21,23),(18,24,22,20),(25,27,29,31),(26,32,30,28),(33,35,37,39),(34,40,38,36),(41,43,45,47),(42,48,46,44),(49,51,53,55),(50,56,54,52),(57,59,61,63),(58,64,62,60),(65,67,69,71),(66,72,70,68),(73,75,77,79),(74,80,78,76)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80)], [(1,36,7,38,5,40,3,34),(2,37,4,35,6,33,8,39),(9,71,11,69,13,67,15,65),(10,68,16,70,14,72,12,66),(17,74,23,76,21,78,19,80),(18,75,20,73,22,79,24,77),(25,50,31,52,29,54,27,56),(26,51,28,49,30,55,32,53),(41,58,47,60,45,62,43,64),(42,59,44,57,46,63,48,61)]])

C5×C4.10D4 is a maximal subgroup of   (C2×C4).D20  (C2×Q8).D10  M4(2).21D10  D20.4D4  D20.5D4  D20.6D4  D20.7D4

55 conjugacy classes

class 1 2A2B4A4B4C4D5A5B5C5D8A8B8C8D10A10B10C10D10E10F10G10H20A···20H20I···20P40A···40P
order122444455558888101010101010101020···2020···2040···40
size112224411114444111122222···24···44···4

55 irreducible representations

dim111111112244
type++++-
imageC1C2C2C4C5C10C10C20D4C5×D4C4.10D4C5×C4.10D4
kernelC5×C4.10D4C5×M4(2)Q8×C10C2×C20C4.10D4M4(2)C2×Q8C2×C4C20C4C5C1
# reps1214484162814

Matrix representation of C5×C4.10D4 in GL4(𝔽41) generated by

37000
03700
00370
00037
,
9000
213200
00320
00209
,
0010
0001
9000
213200
,
002333
001518
393100
21200
G:=sub<GL(4,GF(41))| [37,0,0,0,0,37,0,0,0,0,37,0,0,0,0,37],[9,21,0,0,0,32,0,0,0,0,32,20,0,0,0,9],[0,0,9,21,0,0,0,32,1,0,0,0,0,1,0,0],[0,0,39,21,0,0,31,2,23,15,0,0,33,18,0,0] >;

C5×C4.10D4 in GAP, Magma, Sage, TeX

C_5\times C_4._{10}D_4
% in TeX

G:=Group("C5xC4.10D4");
// GroupNames label

G:=SmallGroup(160,51);
// by ID

G=gap.SmallGroup(160,51);
# by ID

G:=PCGroup([6,-2,-2,-5,-2,-2,-2,240,265,487,2403,1810,88]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^4=1,c^4=b^2,d^2=c*b*c^-1=b^-1,a*b=b*a,a*c=c*a,a*d=d*a,b*d=d*b,d*c*d^-1=b^-1*c^3>;
// generators/relations

Export

Subgroup lattice of C5×C4.10D4 in TeX

׿
×
𝔽