Extensions 1→N→G→Q→1 with N=Q8×C10 and Q=C2

Direct product G=N×Q with N=Q8×C10 and Q=C2
dρLabelID
Q8×C2×C10160Q8xC2xC10160,230

Semidirect products G=N:Q with N=Q8×C10 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C10)⋊1C2 = C2×Q8⋊D5φ: C2/C1C2 ⊆ Out Q8×C1080(Q8xC10):1C2160,162
(Q8×C10)⋊2C2 = C20.C23φ: C2/C1C2 ⊆ Out Q8×C10804(Q8xC10):2C2160,163
(Q8×C10)⋊3C2 = D103Q8φ: C2/C1C2 ⊆ Out Q8×C1080(Q8xC10):3C2160,167
(Q8×C10)⋊4C2 = C20.23D4φ: C2/C1C2 ⊆ Out Q8×C1080(Q8xC10):4C2160,168
(Q8×C10)⋊5C2 = C2×Q8×D5φ: C2/C1C2 ⊆ Out Q8×C1080(Q8xC10):5C2160,220
(Q8×C10)⋊6C2 = C2×Q82D5φ: C2/C1C2 ⊆ Out Q8×C1080(Q8xC10):6C2160,221
(Q8×C10)⋊7C2 = Q8.10D10φ: C2/C1C2 ⊆ Out Q8×C10804(Q8xC10):7C2160,222
(Q8×C10)⋊8C2 = C5×C22⋊Q8φ: C2/C1C2 ⊆ Out Q8×C1080(Q8xC10):8C2160,183
(Q8×C10)⋊9C2 = C5×C4.4D4φ: C2/C1C2 ⊆ Out Q8×C1080(Q8xC10):9C2160,185
(Q8×C10)⋊10C2 = C10×SD16φ: C2/C1C2 ⊆ Out Q8×C1080(Q8xC10):10C2160,194
(Q8×C10)⋊11C2 = C5×C8.C22φ: C2/C1C2 ⊆ Out Q8×C10804(Q8xC10):11C2160,198
(Q8×C10)⋊12C2 = C5×2- 1+4φ: C2/C1C2 ⊆ Out Q8×C10804(Q8xC10):12C2160,233
(Q8×C10)⋊13C2 = C10×C4○D4φ: trivial image80(Q8xC10):13C2160,231

Non-split extensions G=N.Q with N=Q8×C10 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×C10).1C2 = Q8⋊Dic5φ: C2/C1C2 ⊆ Out Q8×C10160(Q8xC10).1C2160,42
(Q8×C10).2C2 = C20.10D4φ: C2/C1C2 ⊆ Out Q8×C10804(Q8xC10).2C2160,43
(Q8×C10).3C2 = C2×C5⋊Q16φ: C2/C1C2 ⊆ Out Q8×C10160(Q8xC10).3C2160,164
(Q8×C10).4C2 = Dic5⋊Q8φ: C2/C1C2 ⊆ Out Q8×C10160(Q8xC10).4C2160,165
(Q8×C10).5C2 = Q8×Dic5φ: C2/C1C2 ⊆ Out Q8×C10160(Q8xC10).5C2160,166
(Q8×C10).6C2 = C5×C4.10D4φ: C2/C1C2 ⊆ Out Q8×C10804(Q8xC10).6C2160,51
(Q8×C10).7C2 = C5×Q8⋊C4φ: C2/C1C2 ⊆ Out Q8×C10160(Q8xC10).7C2160,53
(Q8×C10).8C2 = C5×C4⋊Q8φ: C2/C1C2 ⊆ Out Q8×C10160(Q8xC10).8C2160,189
(Q8×C10).9C2 = C10×Q16φ: C2/C1C2 ⊆ Out Q8×C10160(Q8xC10).9C2160,195
(Q8×C10).10C2 = Q8×C20φ: trivial image160(Q8xC10).10C2160,180

׿
×
𝔽