Copied to
clipboard

G = D103Q8order 160 = 25·5

3rd semidirect product of D10 and Q8 acting via Q8/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D103Q8, C20.22D4, (C2×Q8)⋊3D5, C2.9(Q8×D5), (Q8×C10)⋊3C2, C55(C22⋊Q8), C4⋊Dic515C2, (C2×C4).21D10, C10.57(C2×D4), C10.17(C2×Q8), C4.18(C5⋊D4), D10⋊C4.6C2, C10.36(C4○D4), C10.D416C2, (C2×C10).58C23, (C2×C20).64C22, C2.8(Q82D5), C22.64(C22×D5), (C2×Dic5).21C22, (C22×D5).30C22, (C2×C4×D5).5C2, C2.21(C2×C5⋊D4), SmallGroup(160,167)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D103Q8
C1C5C10C2×C10C22×D5C2×C4×D5 — D103Q8
C5C2×C10 — D103Q8
C1C22C2×Q8

Generators and relations for D103Q8
 G = < a,b,c,d | a10=b2=c4=1, d2=c2, bab=a-1, ac=ca, ad=da, cbc-1=a5b, bd=db, dcd-1=c-1 >

Subgroups: 224 in 74 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, Q8, C23, D5, C10, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic5, C20, C20, D10, D10, C2×C10, C22⋊Q8, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C10.D4, C4⋊Dic5, D10⋊C4, C2×C4×D5, Q8×C10, D103Q8
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22⋊Q8, C5⋊D4, C22×D5, Q8×D5, Q82D5, C2×C5⋊D4, D103Q8

Smallest permutation representation of D103Q8
On 80 points
Generators in S80
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 30)(11 73)(12 72)(13 71)(14 80)(15 79)(16 78)(17 77)(18 76)(19 75)(20 74)(31 47)(32 46)(33 45)(34 44)(35 43)(36 42)(37 41)(38 50)(39 49)(40 48)(51 62)(52 61)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)
(1 50 30 34)(2 41 21 35)(3 42 22 36)(4 43 23 37)(5 44 24 38)(6 45 25 39)(7 46 26 40)(8 47 27 31)(9 48 28 32)(10 49 29 33)(11 59 79 65)(12 60 80 66)(13 51 71 67)(14 52 72 68)(15 53 73 69)(16 54 74 70)(17 55 75 61)(18 56 76 62)(19 57 77 63)(20 58 78 64)
(1 70 30 54)(2 61 21 55)(3 62 22 56)(4 63 23 57)(5 64 24 58)(6 65 25 59)(7 66 26 60)(8 67 27 51)(9 68 28 52)(10 69 29 53)(11 45 79 39)(12 46 80 40)(13 47 71 31)(14 48 72 32)(15 49 73 33)(16 50 74 34)(17 41 75 35)(18 42 76 36)(19 43 77 37)(20 44 78 38)

G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,73)(12,72)(13,71)(14,80)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)(37,41)(38,50)(39,49)(40,48)(51,62)(52,61)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63), (1,50,30,34)(2,41,21,35)(3,42,22,36)(4,43,23,37)(5,44,24,38)(6,45,25,39)(7,46,26,40)(8,47,27,31)(9,48,28,32)(10,49,29,33)(11,59,79,65)(12,60,80,66)(13,51,71,67)(14,52,72,68)(15,53,73,69)(16,54,74,70)(17,55,75,61)(18,56,76,62)(19,57,77,63)(20,58,78,64), (1,70,30,54)(2,61,21,55)(3,62,22,56)(4,63,23,57)(5,64,24,58)(6,65,25,59)(7,66,26,60)(8,67,27,51)(9,68,28,52)(10,69,29,53)(11,45,79,39)(12,46,80,40)(13,47,71,31)(14,48,72,32)(15,49,73,33)(16,50,74,34)(17,41,75,35)(18,42,76,36)(19,43,77,37)(20,44,78,38)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,73)(12,72)(13,71)(14,80)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)(37,41)(38,50)(39,49)(40,48)(51,62)(52,61)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63), (1,50,30,34)(2,41,21,35)(3,42,22,36)(4,43,23,37)(5,44,24,38)(6,45,25,39)(7,46,26,40)(8,47,27,31)(9,48,28,32)(10,49,29,33)(11,59,79,65)(12,60,80,66)(13,51,71,67)(14,52,72,68)(15,53,73,69)(16,54,74,70)(17,55,75,61)(18,56,76,62)(19,57,77,63)(20,58,78,64), (1,70,30,54)(2,61,21,55)(3,62,22,56)(4,63,23,57)(5,64,24,58)(6,65,25,59)(7,66,26,60)(8,67,27,51)(9,68,28,52)(10,69,29,53)(11,45,79,39)(12,46,80,40)(13,47,71,31)(14,48,72,32)(15,49,73,33)(16,50,74,34)(17,41,75,35)(18,42,76,36)(19,43,77,37)(20,44,78,38) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,30),(11,73),(12,72),(13,71),(14,80),(15,79),(16,78),(17,77),(18,76),(19,75),(20,74),(31,47),(32,46),(33,45),(34,44),(35,43),(36,42),(37,41),(38,50),(39,49),(40,48),(51,62),(52,61),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63)], [(1,50,30,34),(2,41,21,35),(3,42,22,36),(4,43,23,37),(5,44,24,38),(6,45,25,39),(7,46,26,40),(8,47,27,31),(9,48,28,32),(10,49,29,33),(11,59,79,65),(12,60,80,66),(13,51,71,67),(14,52,72,68),(15,53,73,69),(16,54,74,70),(17,55,75,61),(18,56,76,62),(19,57,77,63),(20,58,78,64)], [(1,70,30,54),(2,61,21,55),(3,62,22,56),(4,63,23,57),(5,64,24,58),(6,65,25,59),(7,66,26,60),(8,67,27,51),(9,68,28,52),(10,69,29,53),(11,45,79,39),(12,46,80,40),(13,47,71,31),(14,48,72,32),(15,49,73,33),(16,50,74,34),(17,41,75,35),(18,42,76,36),(19,43,77,37),(20,44,78,38)]])

D103Q8 is a maximal subgroup of
D10.Q16  D10.11SD16  D102SD16  D10.7Q16  C5⋊(C8⋊D4)  D10⋊Q16  (C2×C8).D10  D101C8.C2  C52C8.D4  D106SD16  C4014D4  Dic10.16D4  C408D4  D105Q16  D20.17D4  D103Q16  C40.36D4  C42.232D10  D2010Q8  C42.131D10  C42.132D10  C42.133D10  C42.134D10  C42.135D10  D5×C22⋊Q8  C4⋊C426D10  C10.162- 1+4  C10.172- 1+4  C10.512+ 1+4  C10.1182+ 1+4  C10.522+ 1+4  C10.532+ 1+4  C10.202- 1+4  C10.212- 1+4  C10.232- 1+4  C10.772- 1+4  C10.572+ 1+4  C10.582+ 1+4  C10.262- 1+4  C42.137D10  D2010D4  Dic1010D4  C4220D10  C4221D10  C42.234D10  C42.144D10  C42.145D10  D2012D4  D208Q8  C42.241D10  C42.174D10  D209Q8  C42.176D10  C42.178D10  C42.180D10  Q8×C5⋊D4  C10.442- 1+4  C10.452- 1+4  C10.1042- 1+4  (C2×C20)⋊15D4  C10.1452+ 1+4  C10.1472+ 1+4  C60.67D4  D309Q8  D101Dic6  D303Q8  D307Q8
D103Q8 is a maximal quotient of
C204(C4⋊C4)  C10.97(C4×D4)  (C2×C20).288D4  (C2×C20).54D4  D104(C4⋊C4)  D105(C4⋊C4)  (C2×C20).289D4  (C2×C20).56D4  Dic10.4Q8  D20.4Q8  D205Q8  D206Q8  Dic105Q8  Dic106Q8  C10.C22≀C2  (Q8×C10)⋊17C4  (C22×D5)⋊Q8  C60.67D4  D309Q8  D101Dic6  D303Q8  D307Q8

34 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E4F4G4H5A5B10A···10F20A···20L
order122222444444445510···1020···20
size11111010224410102020222···24···4

34 irreducible representations

dim11111122222244
type+++++++-++-+
imageC1C2C2C2C2C2D4Q8D5C4○D4D10C5⋊D4Q8×D5Q82D5
kernelD103Q8C10.D4C4⋊Dic5D10⋊C4C2×C4×D5Q8×C10C20D10C2×Q8C10C2×C4C4C2C2
# reps12121122226822

Matrix representation of D103Q8 in GL4(𝔽41) generated by

40000
04000
0006
00347
,
1000
04000
00346
00337
,
0100
40000
002435
00717
,
32000
0900
00400
00040
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,0,34,0,0,6,7],[1,0,0,0,0,40,0,0,0,0,34,33,0,0,6,7],[0,40,0,0,1,0,0,0,0,0,24,7,0,0,35,17],[32,0,0,0,0,9,0,0,0,0,40,0,0,0,0,40] >;

D103Q8 in GAP, Magma, Sage, TeX

D_{10}\rtimes_3Q_8
% in TeX

G:=Group("D10:3Q8");
// GroupNames label

G:=SmallGroup(160,167);
// by ID

G=gap.SmallGroup(160,167);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,218,188,86,4613]);
// Polycyclic

G:=Group<a,b,c,d|a^10=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽