metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D10⋊3Q8, C20.22D4, (C2×Q8)⋊3D5, C2.9(Q8×D5), (Q8×C10)⋊3C2, C5⋊5(C22⋊Q8), C4⋊Dic5⋊15C2, (C2×C4).21D10, C10.57(C2×D4), C10.17(C2×Q8), C4.18(C5⋊D4), D10⋊C4.6C2, C10.36(C4○D4), C10.D4⋊16C2, (C2×C10).58C23, (C2×C20).64C22, C2.8(Q8⋊2D5), C22.64(C22×D5), (C2×Dic5).21C22, (C22×D5).30C22, (C2×C4×D5).5C2, C2.21(C2×C5⋊D4), SmallGroup(160,167)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for D10⋊3Q8
G = < a,b,c,d | a10=b2=c4=1, d2=c2, bab=a-1, ac=ca, ad=da, cbc-1=a5b, bd=db, dcd-1=c-1 >
Subgroups: 224 in 74 conjugacy classes, 35 normal (19 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, Q8, C23, D5, C10, C22⋊C4, C4⋊C4, C22×C4, C2×Q8, Dic5, C20, C20, D10, D10, C2×C10, C22⋊Q8, C4×D5, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C10.D4, C4⋊Dic5, D10⋊C4, C2×C4×D5, Q8×C10, D10⋊3Q8
Quotients: C1, C2, C22, D4, Q8, C23, D5, C2×D4, C2×Q8, C4○D4, D10, C22⋊Q8, C5⋊D4, C22×D5, Q8×D5, Q8⋊2D5, C2×C5⋊D4, D10⋊3Q8
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)
(1 29)(2 28)(3 27)(4 26)(5 25)(6 24)(7 23)(8 22)(9 21)(10 30)(11 73)(12 72)(13 71)(14 80)(15 79)(16 78)(17 77)(18 76)(19 75)(20 74)(31 47)(32 46)(33 45)(34 44)(35 43)(36 42)(37 41)(38 50)(39 49)(40 48)(51 62)(52 61)(53 70)(54 69)(55 68)(56 67)(57 66)(58 65)(59 64)(60 63)
(1 50 30 34)(2 41 21 35)(3 42 22 36)(4 43 23 37)(5 44 24 38)(6 45 25 39)(7 46 26 40)(8 47 27 31)(9 48 28 32)(10 49 29 33)(11 59 79 65)(12 60 80 66)(13 51 71 67)(14 52 72 68)(15 53 73 69)(16 54 74 70)(17 55 75 61)(18 56 76 62)(19 57 77 63)(20 58 78 64)
(1 70 30 54)(2 61 21 55)(3 62 22 56)(4 63 23 57)(5 64 24 58)(6 65 25 59)(7 66 26 60)(8 67 27 51)(9 68 28 52)(10 69 29 53)(11 45 79 39)(12 46 80 40)(13 47 71 31)(14 48 72 32)(15 49 73 33)(16 50 74 34)(17 41 75 35)(18 42 76 36)(19 43 77 37)(20 44 78 38)
G:=sub<Sym(80)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,73)(12,72)(13,71)(14,80)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)(37,41)(38,50)(39,49)(40,48)(51,62)(52,61)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63), (1,50,30,34)(2,41,21,35)(3,42,22,36)(4,43,23,37)(5,44,24,38)(6,45,25,39)(7,46,26,40)(8,47,27,31)(9,48,28,32)(10,49,29,33)(11,59,79,65)(12,60,80,66)(13,51,71,67)(14,52,72,68)(15,53,73,69)(16,54,74,70)(17,55,75,61)(18,56,76,62)(19,57,77,63)(20,58,78,64), (1,70,30,54)(2,61,21,55)(3,62,22,56)(4,63,23,57)(5,64,24,58)(6,65,25,59)(7,66,26,60)(8,67,27,51)(9,68,28,52)(10,69,29,53)(11,45,79,39)(12,46,80,40)(13,47,71,31)(14,48,72,32)(15,49,73,33)(16,50,74,34)(17,41,75,35)(18,42,76,36)(19,43,77,37)(20,44,78,38)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80), (1,29)(2,28)(3,27)(4,26)(5,25)(6,24)(7,23)(8,22)(9,21)(10,30)(11,73)(12,72)(13,71)(14,80)(15,79)(16,78)(17,77)(18,76)(19,75)(20,74)(31,47)(32,46)(33,45)(34,44)(35,43)(36,42)(37,41)(38,50)(39,49)(40,48)(51,62)(52,61)(53,70)(54,69)(55,68)(56,67)(57,66)(58,65)(59,64)(60,63), (1,50,30,34)(2,41,21,35)(3,42,22,36)(4,43,23,37)(5,44,24,38)(6,45,25,39)(7,46,26,40)(8,47,27,31)(9,48,28,32)(10,49,29,33)(11,59,79,65)(12,60,80,66)(13,51,71,67)(14,52,72,68)(15,53,73,69)(16,54,74,70)(17,55,75,61)(18,56,76,62)(19,57,77,63)(20,58,78,64), (1,70,30,54)(2,61,21,55)(3,62,22,56)(4,63,23,57)(5,64,24,58)(6,65,25,59)(7,66,26,60)(8,67,27,51)(9,68,28,52)(10,69,29,53)(11,45,79,39)(12,46,80,40)(13,47,71,31)(14,48,72,32)(15,49,73,33)(16,50,74,34)(17,41,75,35)(18,42,76,36)(19,43,77,37)(20,44,78,38) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80)], [(1,29),(2,28),(3,27),(4,26),(5,25),(6,24),(7,23),(8,22),(9,21),(10,30),(11,73),(12,72),(13,71),(14,80),(15,79),(16,78),(17,77),(18,76),(19,75),(20,74),(31,47),(32,46),(33,45),(34,44),(35,43),(36,42),(37,41),(38,50),(39,49),(40,48),(51,62),(52,61),(53,70),(54,69),(55,68),(56,67),(57,66),(58,65),(59,64),(60,63)], [(1,50,30,34),(2,41,21,35),(3,42,22,36),(4,43,23,37),(5,44,24,38),(6,45,25,39),(7,46,26,40),(8,47,27,31),(9,48,28,32),(10,49,29,33),(11,59,79,65),(12,60,80,66),(13,51,71,67),(14,52,72,68),(15,53,73,69),(16,54,74,70),(17,55,75,61),(18,56,76,62),(19,57,77,63),(20,58,78,64)], [(1,70,30,54),(2,61,21,55),(3,62,22,56),(4,63,23,57),(5,64,24,58),(6,65,25,59),(7,66,26,60),(8,67,27,51),(9,68,28,52),(10,69,29,53),(11,45,79,39),(12,46,80,40),(13,47,71,31),(14,48,72,32),(15,49,73,33),(16,50,74,34),(17,41,75,35),(18,42,76,36),(19,43,77,37),(20,44,78,38)]])
D10⋊3Q8 is a maximal subgroup of
D10.Q16 D10.11SD16 D10⋊2SD16 D10.7Q16 C5⋊(C8⋊D4) D10⋊Q16 (C2×C8).D10 D10⋊1C8.C2 C5⋊2C8.D4 D10⋊6SD16 C40⋊14D4 Dic10.16D4 C40⋊8D4 D10⋊5Q16 D20.17D4 D10⋊3Q16 C40.36D4 C42.232D10 D20⋊10Q8 C42.131D10 C42.132D10 C42.133D10 C42.134D10 C42.135D10 D5×C22⋊Q8 C4⋊C4⋊26D10 C10.162- 1+4 C10.172- 1+4 C10.512+ 1+4 C10.1182+ 1+4 C10.522+ 1+4 C10.532+ 1+4 C10.202- 1+4 C10.212- 1+4 C10.232- 1+4 C10.772- 1+4 C10.572+ 1+4 C10.582+ 1+4 C10.262- 1+4 C42.137D10 D20⋊10D4 Dic10⋊10D4 C42⋊20D10 C42⋊21D10 C42.234D10 C42.144D10 C42.145D10 D20⋊12D4 D20⋊8Q8 C42.241D10 C42.174D10 D20⋊9Q8 C42.176D10 C42.178D10 C42.180D10 Q8×C5⋊D4 C10.442- 1+4 C10.452- 1+4 C10.1042- 1+4 (C2×C20)⋊15D4 C10.1452+ 1+4 C10.1472+ 1+4 C60.67D4 D30⋊9Q8 D10⋊1Dic6 D30⋊3Q8 D30⋊7Q8
D10⋊3Q8 is a maximal quotient of
C20⋊4(C4⋊C4) C10.97(C4×D4) (C2×C20).288D4 (C2×C20).54D4 D10⋊4(C4⋊C4) D10⋊5(C4⋊C4) (C2×C20).289D4 (C2×C20).56D4 Dic10.4Q8 D20.4Q8 D20⋊5Q8 D20⋊6Q8 Dic10⋊5Q8 Dic10⋊6Q8 C10.C22≀C2 (Q8×C10)⋊17C4 (C22×D5)⋊Q8 C60.67D4 D30⋊9Q8 D10⋊1Dic6 D30⋊3Q8 D30⋊7Q8
34 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 5A | 5B | 10A | ··· | 10F | 20A | ··· | 20L |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 10 | 10 | 2 | 2 | 4 | 4 | 10 | 10 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 |
34 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | - | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | D4 | Q8 | D5 | C4○D4 | D10 | C5⋊D4 | Q8×D5 | Q8⋊2D5 |
kernel | D10⋊3Q8 | C10.D4 | C4⋊Dic5 | D10⋊C4 | C2×C4×D5 | Q8×C10 | C20 | D10 | C2×Q8 | C10 | C2×C4 | C4 | C2 | C2 |
# reps | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 6 | 8 | 2 | 2 |
Matrix representation of D10⋊3Q8 ►in GL4(𝔽41) generated by
40 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 0 | 6 |
0 | 0 | 34 | 7 |
1 | 0 | 0 | 0 |
0 | 40 | 0 | 0 |
0 | 0 | 34 | 6 |
0 | 0 | 33 | 7 |
0 | 1 | 0 | 0 |
40 | 0 | 0 | 0 |
0 | 0 | 24 | 35 |
0 | 0 | 7 | 17 |
32 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 40 | 0 |
0 | 0 | 0 | 40 |
G:=sub<GL(4,GF(41))| [40,0,0,0,0,40,0,0,0,0,0,34,0,0,6,7],[1,0,0,0,0,40,0,0,0,0,34,33,0,0,6,7],[0,40,0,0,1,0,0,0,0,0,24,7,0,0,35,17],[32,0,0,0,0,9,0,0,0,0,40,0,0,0,0,40] >;
D10⋊3Q8 in GAP, Magma, Sage, TeX
D_{10}\rtimes_3Q_8
% in TeX
G:=Group("D10:3Q8");
// GroupNames label
G:=SmallGroup(160,167);
// by ID
G=gap.SmallGroup(160,167);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,103,218,188,86,4613]);
// Polycyclic
G:=Group<a,b,c,d|a^10=b^2=c^4=1,d^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,c*b*c^-1=a^5*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations