Copied to
clipboard

## G = C22×C42order 168 = 23·3·7

### Abelian group of type [2,2,42]

Aliases: C22×C42, SmallGroup(168,57)

Series: Derived Chief Lower central Upper central

 Derived series C1 — C22×C42
 Chief series C1 — C7 — C21 — C42 — C2×C42 — C22×C42
 Lower central C1 — C22×C42
 Upper central C1 — C22×C42

Generators and relations for C22×C42
G = < a,b,c | a2=b2=c42=1, ab=ba, ac=ca, bc=cb >

Subgroups: 64, all normal (8 characteristic)
C1, C2 [×7], C3, C22 [×7], C6 [×7], C7, C23, C2×C6 [×7], C14 [×7], C21, C22×C6, C2×C14 [×7], C42 [×7], C22×C14, C2×C42 [×7], C22×C42
Quotients: C1, C2 [×7], C3, C22 [×7], C6 [×7], C7, C23, C2×C6 [×7], C14 [×7], C21, C22×C6, C2×C14 [×7], C42 [×7], C22×C14, C2×C42 [×7], C22×C42

Smallest permutation representation of C22×C42
Regular action on 168 points
Generators in S168
(1 107)(2 108)(3 109)(4 110)(5 111)(6 112)(7 113)(8 114)(9 115)(10 116)(11 117)(12 118)(13 119)(14 120)(15 121)(16 122)(17 123)(18 124)(19 125)(20 126)(21 85)(22 86)(23 87)(24 88)(25 89)(26 90)(27 91)(28 92)(29 93)(30 94)(31 95)(32 96)(33 97)(34 98)(35 99)(36 100)(37 101)(38 102)(39 103)(40 104)(41 105)(42 106)(43 136)(44 137)(45 138)(46 139)(47 140)(48 141)(49 142)(50 143)(51 144)(52 145)(53 146)(54 147)(55 148)(56 149)(57 150)(58 151)(59 152)(60 153)(61 154)(62 155)(63 156)(64 157)(65 158)(66 159)(67 160)(68 161)(69 162)(70 163)(71 164)(72 165)(73 166)(74 167)(75 168)(76 127)(77 128)(78 129)(79 130)(80 131)(81 132)(82 133)(83 134)(84 135)
(1 51)(2 52)(3 53)(4 54)(5 55)(6 56)(7 57)(8 58)(9 59)(10 60)(11 61)(12 62)(13 63)(14 64)(15 65)(16 66)(17 67)(18 68)(19 69)(20 70)(21 71)(22 72)(23 73)(24 74)(25 75)(26 76)(27 77)(28 78)(29 79)(30 80)(31 81)(32 82)(33 83)(34 84)(35 43)(36 44)(37 45)(38 46)(39 47)(40 48)(41 49)(42 50)(85 164)(86 165)(87 166)(88 167)(89 168)(90 127)(91 128)(92 129)(93 130)(94 131)(95 132)(96 133)(97 134)(98 135)(99 136)(100 137)(101 138)(102 139)(103 140)(104 141)(105 142)(106 143)(107 144)(108 145)(109 146)(110 147)(111 148)(112 149)(113 150)(114 151)(115 152)(116 153)(117 154)(118 155)(119 156)(120 157)(121 158)(122 159)(123 160)(124 161)(125 162)(126 163)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)

G:=sub<Sym(168)| (1,107)(2,108)(3,109)(4,110)(5,111)(6,112)(7,113)(8,114)(9,115)(10,116)(11,117)(12,118)(13,119)(14,120)(15,121)(16,122)(17,123)(18,124)(19,125)(20,126)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,101)(38,102)(39,103)(40,104)(41,105)(42,106)(43,136)(44,137)(45,138)(46,139)(47,140)(48,141)(49,142)(50,143)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,150)(58,151)(59,152)(60,153)(61,154)(62,155)(63,156)(64,157)(65,158)(66,159)(67,160)(68,161)(69,162)(70,163)(71,164)(72,165)(73,166)(74,167)(75,168)(76,127)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,134)(84,135), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,81)(32,82)(33,83)(34,84)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,50)(85,164)(86,165)(87,166)(88,167)(89,168)(90,127)(91,128)(92,129)(93,130)(94,131)(95,132)(96,133)(97,134)(98,135)(99,136)(100,137)(101,138)(102,139)(103,140)(104,141)(105,142)(106,143)(107,144)(108,145)(109,146)(110,147)(111,148)(112,149)(113,150)(114,151)(115,152)(116,153)(117,154)(118,155)(119,156)(120,157)(121,158)(122,159)(123,160)(124,161)(125,162)(126,163), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)>;

G:=Group( (1,107)(2,108)(3,109)(4,110)(5,111)(6,112)(7,113)(8,114)(9,115)(10,116)(11,117)(12,118)(13,119)(14,120)(15,121)(16,122)(17,123)(18,124)(19,125)(20,126)(21,85)(22,86)(23,87)(24,88)(25,89)(26,90)(27,91)(28,92)(29,93)(30,94)(31,95)(32,96)(33,97)(34,98)(35,99)(36,100)(37,101)(38,102)(39,103)(40,104)(41,105)(42,106)(43,136)(44,137)(45,138)(46,139)(47,140)(48,141)(49,142)(50,143)(51,144)(52,145)(53,146)(54,147)(55,148)(56,149)(57,150)(58,151)(59,152)(60,153)(61,154)(62,155)(63,156)(64,157)(65,158)(66,159)(67,160)(68,161)(69,162)(70,163)(71,164)(72,165)(73,166)(74,167)(75,168)(76,127)(77,128)(78,129)(79,130)(80,131)(81,132)(82,133)(83,134)(84,135), (1,51)(2,52)(3,53)(4,54)(5,55)(6,56)(7,57)(8,58)(9,59)(10,60)(11,61)(12,62)(13,63)(14,64)(15,65)(16,66)(17,67)(18,68)(19,69)(20,70)(21,71)(22,72)(23,73)(24,74)(25,75)(26,76)(27,77)(28,78)(29,79)(30,80)(31,81)(32,82)(33,83)(34,84)(35,43)(36,44)(37,45)(38,46)(39,47)(40,48)(41,49)(42,50)(85,164)(86,165)(87,166)(88,167)(89,168)(90,127)(91,128)(92,129)(93,130)(94,131)(95,132)(96,133)(97,134)(98,135)(99,136)(100,137)(101,138)(102,139)(103,140)(104,141)(105,142)(106,143)(107,144)(108,145)(109,146)(110,147)(111,148)(112,149)(113,150)(114,151)(115,152)(116,153)(117,154)(118,155)(119,156)(120,157)(121,158)(122,159)(123,160)(124,161)(125,162)(126,163), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168) );

G=PermutationGroup([(1,107),(2,108),(3,109),(4,110),(5,111),(6,112),(7,113),(8,114),(9,115),(10,116),(11,117),(12,118),(13,119),(14,120),(15,121),(16,122),(17,123),(18,124),(19,125),(20,126),(21,85),(22,86),(23,87),(24,88),(25,89),(26,90),(27,91),(28,92),(29,93),(30,94),(31,95),(32,96),(33,97),(34,98),(35,99),(36,100),(37,101),(38,102),(39,103),(40,104),(41,105),(42,106),(43,136),(44,137),(45,138),(46,139),(47,140),(48,141),(49,142),(50,143),(51,144),(52,145),(53,146),(54,147),(55,148),(56,149),(57,150),(58,151),(59,152),(60,153),(61,154),(62,155),(63,156),(64,157),(65,158),(66,159),(67,160),(68,161),(69,162),(70,163),(71,164),(72,165),(73,166),(74,167),(75,168),(76,127),(77,128),(78,129),(79,130),(80,131),(81,132),(82,133),(83,134),(84,135)], [(1,51),(2,52),(3,53),(4,54),(5,55),(6,56),(7,57),(8,58),(9,59),(10,60),(11,61),(12,62),(13,63),(14,64),(15,65),(16,66),(17,67),(18,68),(19,69),(20,70),(21,71),(22,72),(23,73),(24,74),(25,75),(26,76),(27,77),(28,78),(29,79),(30,80),(31,81),(32,82),(33,83),(34,84),(35,43),(36,44),(37,45),(38,46),(39,47),(40,48),(41,49),(42,50),(85,164),(86,165),(87,166),(88,167),(89,168),(90,127),(91,128),(92,129),(93,130),(94,131),(95,132),(96,133),(97,134),(98,135),(99,136),(100,137),(101,138),(102,139),(103,140),(104,141),(105,142),(106,143),(107,144),(108,145),(109,146),(110,147),(111,148),(112,149),(113,150),(114,151),(115,152),(116,153),(117,154),(118,155),(119,156),(120,157),(121,158),(122,159),(123,160),(124,161),(125,162),(126,163)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)])

C22×C42 is a maximal subgroup of   C42.38D4

168 conjugacy classes

 class 1 2A ··· 2G 3A 3B 6A ··· 6N 7A ··· 7F 14A ··· 14AP 21A ··· 21L 42A ··· 42CF order 1 2 ··· 2 3 3 6 ··· 6 7 ··· 7 14 ··· 14 21 ··· 21 42 ··· 42 size 1 1 ··· 1 1 1 1 ··· 1 1 ··· 1 1 ··· 1 1 ··· 1 1 ··· 1

168 irreducible representations

 dim 1 1 1 1 1 1 1 1 type + + image C1 C2 C3 C6 C7 C14 C21 C42 kernel C22×C42 C2×C42 C22×C14 C2×C14 C22×C6 C2×C6 C23 C22 # reps 1 7 2 14 6 42 12 84

Matrix representation of C22×C42 in GL3(𝔽43) generated by

 42 0 0 0 1 0 0 0 1
,
 1 0 0 0 1 0 0 0 42
,
 10 0 0 0 33 0 0 0 5
G:=sub<GL(3,GF(43))| [42,0,0,0,1,0,0,0,1],[1,0,0,0,1,0,0,0,42],[10,0,0,0,33,0,0,0,5] >;

C22×C42 in GAP, Magma, Sage, TeX

C_2^2\times C_{42}
% in TeX

G:=Group("C2^2xC42");
// GroupNames label

G:=SmallGroup(168,57);
// by ID

G=gap.SmallGroup(168,57);
# by ID

G:=PCGroup([5,-2,-2,-2,-3,-7]);
// Polycyclic

G:=Group<a,b,c|a^2=b^2=c^42=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations

׿
×
𝔽