direct product, cyclic, abelian, monomial
Aliases: C21, also denoted Z21, SmallGroup(21,2)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C21 |
C1 — C21 |
C1 — C21 |
Generators and relations for C21
G = < a | a21=1 >
Character table of C21
class | 1 | 3A | 3B | 7A | 7B | 7C | 7D | 7E | 7F | 21A | 21B | 21C | 21D | 21E | 21F | 21G | 21H | 21I | 21J | 21K | 21L | |
size | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | linear of order 3 |
ρ3 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ32 | ζ32 | ζ32 | ζ32 | ζ3 | ζ3 | ζ3 | ζ3 | ζ3 | ζ32 | linear of order 3 |
ρ4 | 1 | 1 | 1 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ72 | ζ76 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ7 | ζ72 | ζ73 | ζ74 | ζ75 | ζ72 | linear of order 7 |
ρ5 | 1 | ζ32 | ζ3 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ72 | ζ32ζ76 | ζ3ζ73 | ζ3ζ74 | ζ3ζ75 | ζ3ζ76 | ζ3ζ7 | ζ32ζ7 | ζ32ζ72 | ζ32ζ73 | ζ32ζ74 | ζ32ζ75 | ζ3ζ72 | linear of order 21 faithful |
ρ6 | 1 | ζ3 | ζ32 | ζ73 | ζ74 | ζ75 | ζ76 | ζ7 | ζ72 | ζ3ζ76 | ζ32ζ73 | ζ32ζ74 | ζ32ζ75 | ζ32ζ76 | ζ32ζ7 | ζ3ζ7 | ζ3ζ72 | ζ3ζ73 | ζ3ζ74 | ζ3ζ75 | ζ32ζ72 | linear of order 21 faithful |
ρ7 | 1 | 1 | 1 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ74 | ζ75 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ72 | ζ74 | ζ76 | ζ7 | ζ73 | ζ74 | linear of order 7 |
ρ8 | 1 | ζ32 | ζ3 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ74 | ζ32ζ75 | ζ3ζ76 | ζ3ζ7 | ζ3ζ73 | ζ3ζ75 | ζ3ζ72 | ζ32ζ72 | ζ32ζ74 | ζ32ζ76 | ζ32ζ7 | ζ32ζ73 | ζ3ζ74 | linear of order 21 faithful |
ρ9 | 1 | ζ3 | ζ32 | ζ76 | ζ7 | ζ73 | ζ75 | ζ72 | ζ74 | ζ3ζ75 | ζ32ζ76 | ζ32ζ7 | ζ32ζ73 | ζ32ζ75 | ζ32ζ72 | ζ3ζ72 | ζ3ζ74 | ζ3ζ76 | ζ3ζ7 | ζ3ζ73 | ζ32ζ74 | linear of order 21 faithful |
ρ10 | 1 | 1 | 1 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ76 | ζ74 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ73 | ζ76 | ζ72 | ζ75 | ζ7 | ζ76 | linear of order 7 |
ρ11 | 1 | ζ32 | ζ3 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ76 | ζ32ζ74 | ζ3ζ72 | ζ3ζ75 | ζ3ζ7 | ζ3ζ74 | ζ3ζ73 | ζ32ζ73 | ζ32ζ76 | ζ32ζ72 | ζ32ζ75 | ζ32ζ7 | ζ3ζ76 | linear of order 21 faithful |
ρ12 | 1 | ζ3 | ζ32 | ζ72 | ζ75 | ζ7 | ζ74 | ζ73 | ζ76 | ζ3ζ74 | ζ32ζ72 | ζ32ζ75 | ζ32ζ7 | ζ32ζ74 | ζ32ζ73 | ζ3ζ73 | ζ3ζ76 | ζ3ζ72 | ζ3ζ75 | ζ3ζ7 | ζ32ζ76 | linear of order 21 faithful |
ρ13 | 1 | 1 | 1 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ7 | ζ73 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ74 | ζ7 | ζ75 | ζ72 | ζ76 | ζ7 | linear of order 7 |
ρ14 | 1 | ζ32 | ζ3 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ7 | ζ32ζ73 | ζ3ζ75 | ζ3ζ72 | ζ3ζ76 | ζ3ζ73 | ζ3ζ74 | ζ32ζ74 | ζ32ζ7 | ζ32ζ75 | ζ32ζ72 | ζ32ζ76 | ζ3ζ7 | linear of order 21 faithful |
ρ15 | 1 | ζ3 | ζ32 | ζ75 | ζ72 | ζ76 | ζ73 | ζ74 | ζ7 | ζ3ζ73 | ζ32ζ75 | ζ32ζ72 | ζ32ζ76 | ζ32ζ73 | ζ32ζ74 | ζ3ζ74 | ζ3ζ7 | ζ3ζ75 | ζ3ζ72 | ζ3ζ76 | ζ32ζ7 | linear of order 21 faithful |
ρ16 | 1 | 1 | 1 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ73 | ζ72 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ75 | ζ73 | ζ7 | ζ76 | ζ74 | ζ73 | linear of order 7 |
ρ17 | 1 | ζ32 | ζ3 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ73 | ζ32ζ72 | ζ3ζ7 | ζ3ζ76 | ζ3ζ74 | ζ3ζ72 | ζ3ζ75 | ζ32ζ75 | ζ32ζ73 | ζ32ζ7 | ζ32ζ76 | ζ32ζ74 | ζ3ζ73 | linear of order 21 faithful |
ρ18 | 1 | ζ3 | ζ32 | ζ7 | ζ76 | ζ74 | ζ72 | ζ75 | ζ73 | ζ3ζ72 | ζ32ζ7 | ζ32ζ76 | ζ32ζ74 | ζ32ζ72 | ζ32ζ75 | ζ3ζ75 | ζ3ζ73 | ζ3ζ7 | ζ3ζ76 | ζ3ζ74 | ζ32ζ73 | linear of order 21 faithful |
ρ19 | 1 | 1 | 1 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ75 | ζ7 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ76 | ζ75 | ζ74 | ζ73 | ζ72 | ζ75 | linear of order 7 |
ρ20 | 1 | ζ32 | ζ3 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ75 | ζ32ζ7 | ζ3ζ74 | ζ3ζ73 | ζ3ζ72 | ζ3ζ7 | ζ3ζ76 | ζ32ζ76 | ζ32ζ75 | ζ32ζ74 | ζ32ζ73 | ζ32ζ72 | ζ3ζ75 | linear of order 21 faithful |
ρ21 | 1 | ζ3 | ζ32 | ζ74 | ζ73 | ζ72 | ζ7 | ζ76 | ζ75 | ζ3ζ7 | ζ32ζ74 | ζ32ζ73 | ζ32ζ72 | ζ32ζ7 | ζ32ζ76 | ζ3ζ76 | ζ3ζ75 | ζ3ζ74 | ζ3ζ73 | ζ3ζ72 | ζ32ζ75 | linear of order 21 faithful |
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)
G:=sub<Sym(21)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)]])
G:=TransitiveGroup(21,1);
C21 is a maximal subgroup of
D21 C7⋊C9
Matrix representation of C21 ►in GL1(𝔽43) generated by
40 |
G:=sub<GL(1,GF(43))| [40] >;
C21 in GAP, Magma, Sage, TeX
C_{21}
% in TeX
G:=Group("C21");
// GroupNames label
G:=SmallGroup(21,2);
// by ID
G=gap.SmallGroup(21,2);
# by ID
G:=PCGroup([2,-3,-7]);
// Polycyclic
G:=Group<a|a^21=1>;
// generators/relations
Export
Subgroup lattice of C21 in TeX
Character table of C21 in TeX