Extensions 1→N→G→Q→1 with N=C3×2- (1+4) and Q=C2

Direct product G=N×Q with N=C3×2- (1+4) and Q=C2
dρLabelID
C6×2- (1+4)96C6xES-(2,2)192,1535

Semidirect products G=N:Q with N=C3×2- (1+4) and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×2- (1+4))⋊1C2 = 2- (1+4)4S3φ: C2/C1C2 ⊆ Out C3×2- (1+4)488+(C3xES-(2,2)):1C2192,804
(C3×2- (1+4))⋊2C2 = D12.34C23φ: C2/C1C2 ⊆ Out C3×2- (1+4)488+(C3xES-(2,2)):2C2192,1396
(C3×2- (1+4))⋊3C2 = D12.35C23φ: C2/C1C2 ⊆ Out C3×2- (1+4)968-(C3xES-(2,2)):3C2192,1397
(C3×2- (1+4))⋊4C2 = S3×2- (1+4)φ: C2/C1C2 ⊆ Out C3×2- (1+4)488-(C3xES-(2,2)):4C2192,1526
(C3×2- (1+4))⋊5C2 = D12.39C23φ: C2/C1C2 ⊆ Out C3×2- (1+4)488+(C3xES-(2,2)):5C2192,1527
(C3×2- (1+4))⋊6C2 = C3×D4.8D4φ: C2/C1C2 ⊆ Out C3×2- (1+4)484(C3xES-(2,2)):6C2192,887
(C3×2- (1+4))⋊7C2 = C3×D4○SD16φ: C2/C1C2 ⊆ Out C3×2- (1+4)484(C3xES-(2,2)):7C2192,1466
(C3×2- (1+4))⋊8C2 = C3×Q8○D8φ: C2/C1C2 ⊆ Out C3×2- (1+4)964(C3xES-(2,2)):8C2192,1467
(C3×2- (1+4))⋊9C2 = C3×C2.C25φ: trivial image484(C3xES-(2,2)):9C2192,1536

Non-split extensions G=N.Q with N=C3×2- (1+4) and Q=C2
extensionφ:Q→Out NdρLabelID
(C3×2- (1+4)).1C2 = 2- (1+4).2S3φ: C2/C1C2 ⊆ Out C3×2- (1+4)488-(C3xES-(2,2)).1C2192,805
(C3×2- (1+4)).2C2 = C3×D4.10D4φ: C2/C1C2 ⊆ Out C3×2- (1+4)484(C3xES-(2,2)).2C2192,889

׿
×
𝔽