Copied to
clipboard

?

G = C3×D4○SD16order 192 = 26·3

Direct product of C3 and D4○SD16

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×D4○SD16, C24.49C23, C12.86C24, 2+ (1+4)9C6, 2- (1+4)5C6, C8○D48C6, C4○D85C6, D85(C2×C6), C8⋊C225C6, Q165(C2×C6), C4.46(C6×D4), SD166(C2×C6), (C2×SD16)⋊6C6, (C3×D4).46D4, D4.12(C3×D4), C8.C224C6, C4.9(C23×C6), (C3×Q8).46D4, Q8.17(C3×D4), C22.8(C6×D4), (C2×C24)⋊24C22, (C6×SD16)⋊17C2, C12.407(C2×D4), (C3×D8)⋊22C22, M4(2)⋊7(C2×C6), C8.13(C22×C6), (C6×Q8)⋊32C22, D4.6(C22×C6), (C3×Q16)⋊19C22, (C3×D4).39C23, C6.207(C22×D4), (C3×Q8).40C23, Q8.10(C22×C6), (C2×C12).688C23, (C3×SD16)⋊21C22, (C6×D4).226C22, (C3×2- (1+4))⋊7C2, (C3×M4(2))⋊28C22, (C3×2+ (1+4))⋊10C2, (C2×C8)⋊5(C2×C6), C2.31(D4×C2×C6), C4○D43(C2×C6), (C3×C8○D4)⋊9C2, (C2×Q8)⋊8(C2×C6), (C3×C4○D8)⋊12C2, (C3×C8⋊C22)⋊12C2, (C2×D4).39(C2×C6), (C2×C6).185(C2×D4), (C3×C4○D4)⋊15C22, (C3×C8.C22)⋊11C2, (C2×C4).49(C22×C6), SmallGroup(192,1466)

Series: Derived Chief Lower central Upper central

C1C4 — C3×D4○SD16
C1C2C4C12C3×Q8C3×SD16C6×SD16 — C3×D4○SD16
C1C2C4 — C3×D4○SD16
C1C6C3×C4○D4 — C3×D4○SD16

Subgroups: 410 in 258 conjugacy classes, 158 normal (26 characteristic)
C1, C2, C2 [×7], C3, C4, C4 [×3], C4 [×4], C22 [×3], C22 [×7], C6, C6 [×7], C8, C8 [×3], C2×C4 [×3], C2×C4 [×9], D4, D4 [×6], D4 [×9], Q8 [×2], Q8 [×3], Q8 [×3], C23 [×3], C12, C12 [×3], C12 [×4], C2×C6 [×3], C2×C6 [×7], C2×C8 [×3], M4(2) [×3], D8 [×3], SD16, SD16 [×9], Q16 [×3], C2×D4 [×3], C2×D4 [×3], C2×Q8 [×3], C2×Q8, C4○D4, C4○D4 [×6], C4○D4 [×4], C24, C24 [×3], C2×C12 [×3], C2×C12 [×9], C3×D4, C3×D4 [×6], C3×D4 [×9], C3×Q8 [×2], C3×Q8 [×3], C3×Q8 [×3], C22×C6 [×3], C8○D4, C2×SD16 [×3], C4○D8 [×3], C8⋊C22 [×3], C8.C22 [×3], 2+ (1+4), 2- (1+4), C2×C24 [×3], C3×M4(2) [×3], C3×D8 [×3], C3×SD16, C3×SD16 [×9], C3×Q16 [×3], C6×D4 [×3], C6×D4 [×3], C6×Q8 [×3], C6×Q8, C3×C4○D4, C3×C4○D4 [×6], C3×C4○D4 [×4], D4○SD16, C3×C8○D4, C6×SD16 [×3], C3×C4○D8 [×3], C3×C8⋊C22 [×3], C3×C8.C22 [×3], C3×2+ (1+4), C3×2- (1+4), C3×D4○SD16

Quotients:
C1, C2 [×15], C3, C22 [×35], C6 [×15], D4 [×4], C23 [×15], C2×C6 [×35], C2×D4 [×6], C24, C3×D4 [×4], C22×C6 [×15], C22×D4, C6×D4 [×6], C23×C6, D4○SD16, D4×C2×C6, C3×D4○SD16

Generators and relations
 G = < a,b,c,d,e | a3=b4=c2=e2=1, d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d3 >

Smallest permutation representation
On 48 points
Generators in S48
(1 39 18)(2 40 19)(3 33 20)(4 34 21)(5 35 22)(6 36 23)(7 37 24)(8 38 17)(9 47 26)(10 48 27)(11 41 28)(12 42 29)(13 43 30)(14 44 31)(15 45 32)(16 46 25)
(1 47 5 43)(2 48 6 44)(3 41 7 45)(4 42 8 46)(9 22 13 18)(10 23 14 19)(11 24 15 20)(12 17 16 21)(25 34 29 38)(26 35 30 39)(27 36 31 40)(28 37 32 33)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(17 23)(19 21)(20 24)(25 31)(27 29)(28 32)(33 37)(34 40)(36 38)(41 45)(42 48)(44 46)

G:=sub<Sym(48)| (1,39,18)(2,40,19)(3,33,20)(4,34,21)(5,35,22)(6,36,23)(7,37,24)(8,38,17)(9,47,26)(10,48,27)(11,41,28)(12,42,29)(13,43,30)(14,44,31)(15,45,32)(16,46,25), (1,47,5,43)(2,48,6,44)(3,41,7,45)(4,42,8,46)(9,22,13,18)(10,23,14,19)(11,24,15,20)(12,17,16,21)(25,34,29,38)(26,35,30,39)(27,36,31,40)(28,37,32,33), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,23)(19,21)(20,24)(25,31)(27,29)(28,32)(33,37)(34,40)(36,38)(41,45)(42,48)(44,46)>;

G:=Group( (1,39,18)(2,40,19)(3,33,20)(4,34,21)(5,35,22)(6,36,23)(7,37,24)(8,38,17)(9,47,26)(10,48,27)(11,41,28)(12,42,29)(13,43,30)(14,44,31)(15,45,32)(16,46,25), (1,47,5,43)(2,48,6,44)(3,41,7,45)(4,42,8,46)(9,22,13,18)(10,23,14,19)(11,24,15,20)(12,17,16,21)(25,34,29,38)(26,35,30,39)(27,36,31,40)(28,37,32,33), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,23)(19,21)(20,24)(25,31)(27,29)(28,32)(33,37)(34,40)(36,38)(41,45)(42,48)(44,46) );

G=PermutationGroup([(1,39,18),(2,40,19),(3,33,20),(4,34,21),(5,35,22),(6,36,23),(7,37,24),(8,38,17),(9,47,26),(10,48,27),(11,41,28),(12,42,29),(13,43,30),(14,44,31),(15,45,32),(16,46,25)], [(1,47,5,43),(2,48,6,44),(3,41,7,45),(4,42,8,46),(9,22,13,18),(10,23,14,19),(11,24,15,20),(12,17,16,21),(25,34,29,38),(26,35,30,39),(27,36,31,40),(28,37,32,33)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(17,23),(19,21),(20,24),(25,31),(27,29),(28,32),(33,37),(34,40),(36,38),(41,45),(42,48),(44,46)])

Matrix representation G ⊆ GL4(𝔽73) generated by

64000
06400
00640
00064
,
0010
0001
72000
07200
,
0010
0001
1000
0100
,
66700
6600
00667
0066
,
1000
07200
0010
00072
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[0,0,72,0,0,0,0,72,1,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[6,6,0,0,67,6,0,0,0,0,6,6,0,0,67,6],[1,0,0,0,0,72,0,0,0,0,1,0,0,0,0,72] >;

66 conjugacy classes

class 1 2A2B2C2D2E2F2G2H3A3B4A4B4C4D4E4F4G4H6A6B6C···6H6I···6P8A8B8C8D8E12A···12H12I···12P24A24B24C24D24E···24J
order1222222223344444444666···66···68888812···1212···122424242424···24
size1122244441122224444112···24···4224442···24···422224···4

66 irreducible representations

dim1111111111111111222244
type++++++++++
imageC1C2C2C2C2C2C2C2C3C6C6C6C6C6C6C6D4D4C3×D4C3×D4D4○SD16C3×D4○SD16
kernelC3×D4○SD16C3×C8○D4C6×SD16C3×C4○D8C3×C8⋊C22C3×C8.C22C3×2+ (1+4)C3×2- (1+4)D4○SD16C8○D4C2×SD16C4○D8C8⋊C22C8.C222+ (1+4)2- (1+4)C3×D4C3×Q8D4Q8C3C1
# reps1133331122666622316224

In GAP, Magma, Sage, TeX

C_3\times D_4\circ SD_{16}
% in TeX

G:=Group("C3xD4oSD16");
// GroupNames label

G:=SmallGroup(192,1466);
// by ID

G=gap.SmallGroup(192,1466);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,672,701,745,6053,3036,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=e^2=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations

׿
×
𝔽