direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×D4○SD16, C24.49C23, C12.86C24, 2+ (1+4)⋊9C6, 2- (1+4)⋊5C6, C8○D4⋊8C6, C4○D8⋊5C6, D8⋊5(C2×C6), C8⋊C22⋊5C6, Q16⋊5(C2×C6), C4.46(C6×D4), SD16⋊6(C2×C6), (C2×SD16)⋊6C6, (C3×D4).46D4, D4.12(C3×D4), C8.C22⋊4C6, C4.9(C23×C6), (C3×Q8).46D4, Q8.17(C3×D4), C22.8(C6×D4), (C2×C24)⋊24C22, (C6×SD16)⋊17C2, C12.407(C2×D4), (C3×D8)⋊22C22, M4(2)⋊7(C2×C6), C8.13(C22×C6), (C6×Q8)⋊32C22, D4.6(C22×C6), (C3×Q16)⋊19C22, (C3×D4).39C23, C6.207(C22×D4), (C3×Q8).40C23, Q8.10(C22×C6), (C2×C12).688C23, (C3×SD16)⋊21C22, (C6×D4).226C22, (C3×2- (1+4))⋊7C2, (C3×M4(2))⋊28C22, (C3×2+ (1+4))⋊10C2, (C2×C8)⋊5(C2×C6), C2.31(D4×C2×C6), C4○D4⋊3(C2×C6), (C3×C8○D4)⋊9C2, (C2×Q8)⋊8(C2×C6), (C3×C4○D8)⋊12C2, (C3×C8⋊C22)⋊12C2, (C2×D4).39(C2×C6), (C2×C6).185(C2×D4), (C3×C4○D4)⋊15C22, (C3×C8.C22)⋊11C2, (C2×C4).49(C22×C6), SmallGroup(192,1466)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 410 in 258 conjugacy classes, 158 normal (26 characteristic)
C1, C2, C2 [×7], C3, C4, C4 [×3], C4 [×4], C22 [×3], C22 [×7], C6, C6 [×7], C8, C8 [×3], C2×C4 [×3], C2×C4 [×9], D4, D4 [×6], D4 [×9], Q8 [×2], Q8 [×3], Q8 [×3], C23 [×3], C12, C12 [×3], C12 [×4], C2×C6 [×3], C2×C6 [×7], C2×C8 [×3], M4(2) [×3], D8 [×3], SD16, SD16 [×9], Q16 [×3], C2×D4 [×3], C2×D4 [×3], C2×Q8 [×3], C2×Q8, C4○D4, C4○D4 [×6], C4○D4 [×4], C24, C24 [×3], C2×C12 [×3], C2×C12 [×9], C3×D4, C3×D4 [×6], C3×D4 [×9], C3×Q8 [×2], C3×Q8 [×3], C3×Q8 [×3], C22×C6 [×3], C8○D4, C2×SD16 [×3], C4○D8 [×3], C8⋊C22 [×3], C8.C22 [×3], 2+ (1+4), 2- (1+4), C2×C24 [×3], C3×M4(2) [×3], C3×D8 [×3], C3×SD16, C3×SD16 [×9], C3×Q16 [×3], C6×D4 [×3], C6×D4 [×3], C6×Q8 [×3], C6×Q8, C3×C4○D4, C3×C4○D4 [×6], C3×C4○D4 [×4], D4○SD16, C3×C8○D4, C6×SD16 [×3], C3×C4○D8 [×3], C3×C8⋊C22 [×3], C3×C8.C22 [×3], C3×2+ (1+4), C3×2- (1+4), C3×D4○SD16
Quotients:
C1, C2 [×15], C3, C22 [×35], C6 [×15], D4 [×4], C23 [×15], C2×C6 [×35], C2×D4 [×6], C24, C3×D4 [×4], C22×C6 [×15], C22×D4, C6×D4 [×6], C23×C6, D4○SD16, D4×C2×C6, C3×D4○SD16
Generators and relations
G = < a,b,c,d,e | a3=b4=c2=e2=1, d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d3 >
(1 39 18)(2 40 19)(3 33 20)(4 34 21)(5 35 22)(6 36 23)(7 37 24)(8 38 17)(9 47 26)(10 48 27)(11 41 28)(12 42 29)(13 43 30)(14 44 31)(15 45 32)(16 46 25)
(1 47 5 43)(2 48 6 44)(3 41 7 45)(4 42 8 46)(9 22 13 18)(10 23 14 19)(11 24 15 20)(12 17 16 21)(25 34 29 38)(26 35 30 39)(27 36 31 40)(28 37 32 33)
(1 43)(2 44)(3 45)(4 46)(5 47)(6 48)(7 41)(8 42)(9 22)(10 23)(11 24)(12 17)(13 18)(14 19)(15 20)(16 21)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 4)(3 7)(6 8)(10 12)(11 15)(14 16)(17 23)(19 21)(20 24)(25 31)(27 29)(28 32)(33 37)(34 40)(36 38)(41 45)(42 48)(44 46)
G:=sub<Sym(48)| (1,39,18)(2,40,19)(3,33,20)(4,34,21)(5,35,22)(6,36,23)(7,37,24)(8,38,17)(9,47,26)(10,48,27)(11,41,28)(12,42,29)(13,43,30)(14,44,31)(15,45,32)(16,46,25), (1,47,5,43)(2,48,6,44)(3,41,7,45)(4,42,8,46)(9,22,13,18)(10,23,14,19)(11,24,15,20)(12,17,16,21)(25,34,29,38)(26,35,30,39)(27,36,31,40)(28,37,32,33), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,23)(19,21)(20,24)(25,31)(27,29)(28,32)(33,37)(34,40)(36,38)(41,45)(42,48)(44,46)>;
G:=Group( (1,39,18)(2,40,19)(3,33,20)(4,34,21)(5,35,22)(6,36,23)(7,37,24)(8,38,17)(9,47,26)(10,48,27)(11,41,28)(12,42,29)(13,43,30)(14,44,31)(15,45,32)(16,46,25), (1,47,5,43)(2,48,6,44)(3,41,7,45)(4,42,8,46)(9,22,13,18)(10,23,14,19)(11,24,15,20)(12,17,16,21)(25,34,29,38)(26,35,30,39)(27,36,31,40)(28,37,32,33), (1,43)(2,44)(3,45)(4,46)(5,47)(6,48)(7,41)(8,42)(9,22)(10,23)(11,24)(12,17)(13,18)(14,19)(15,20)(16,21)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,4)(3,7)(6,8)(10,12)(11,15)(14,16)(17,23)(19,21)(20,24)(25,31)(27,29)(28,32)(33,37)(34,40)(36,38)(41,45)(42,48)(44,46) );
G=PermutationGroup([(1,39,18),(2,40,19),(3,33,20),(4,34,21),(5,35,22),(6,36,23),(7,37,24),(8,38,17),(9,47,26),(10,48,27),(11,41,28),(12,42,29),(13,43,30),(14,44,31),(15,45,32),(16,46,25)], [(1,47,5,43),(2,48,6,44),(3,41,7,45),(4,42,8,46),(9,22,13,18),(10,23,14,19),(11,24,15,20),(12,17,16,21),(25,34,29,38),(26,35,30,39),(27,36,31,40),(28,37,32,33)], [(1,43),(2,44),(3,45),(4,46),(5,47),(6,48),(7,41),(8,42),(9,22),(10,23),(11,24),(12,17),(13,18),(14,19),(15,20),(16,21),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,4),(3,7),(6,8),(10,12),(11,15),(14,16),(17,23),(19,21),(20,24),(25,31),(27,29),(28,32),(33,37),(34,40),(36,38),(41,45),(42,48),(44,46)])
Matrix representation ►G ⊆ GL4(𝔽73) generated by
64 | 0 | 0 | 0 |
0 | 64 | 0 | 0 |
0 | 0 | 64 | 0 |
0 | 0 | 0 | 64 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
6 | 67 | 0 | 0 |
6 | 6 | 0 | 0 |
0 | 0 | 6 | 67 |
0 | 0 | 6 | 6 |
1 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 72 |
G:=sub<GL(4,GF(73))| [64,0,0,0,0,64,0,0,0,0,64,0,0,0,0,64],[0,0,72,0,0,0,0,72,1,0,0,0,0,1,0,0],[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[6,6,0,0,67,6,0,0,0,0,6,6,0,0,67,6],[1,0,0,0,0,72,0,0,0,0,1,0,0,0,0,72] >;
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 6A | 6B | 6C | ··· | 6H | 6I | ··· | 6P | 8A | 8B | 8C | 8D | 8E | 12A | ··· | 12H | 12I | ··· | 12P | 24A | 24B | 24C | 24D | 24E | ··· | 24J |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | ··· | 6 | 6 | ··· | 6 | 8 | 8 | 8 | 8 | 8 | 12 | ··· | 12 | 12 | ··· | 12 | 24 | 24 | 24 | 24 | 24 | ··· | 24 |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | 2 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | ||||||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C3 | C6 | C6 | C6 | C6 | C6 | C6 | C6 | D4 | D4 | C3×D4 | C3×D4 | D4○SD16 | C3×D4○SD16 |
kernel | C3×D4○SD16 | C3×C8○D4 | C6×SD16 | C3×C4○D8 | C3×C8⋊C22 | C3×C8.C22 | C3×2+ (1+4) | C3×2- (1+4) | D4○SD16 | C8○D4 | C2×SD16 | C4○D8 | C8⋊C22 | C8.C22 | 2+ (1+4) | 2- (1+4) | C3×D4 | C3×Q8 | D4 | Q8 | C3 | C1 |
# reps | 1 | 1 | 3 | 3 | 3 | 3 | 1 | 1 | 2 | 2 | 6 | 6 | 6 | 6 | 2 | 2 | 3 | 1 | 6 | 2 | 2 | 4 |
In GAP, Magma, Sage, TeX
C_3\times D_4\circ SD_{16}
% in TeX
G:=Group("C3xD4oSD16");
// GroupNames label
G:=SmallGroup(192,1466);
// by ID
G=gap.SmallGroup(192,1466);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,672,701,745,6053,3036,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^4=c^2=e^2=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^3>;
// generators/relations