Copied to
clipboard

G = C3×D4.10D4order 192 = 26·3

Direct product of C3 and D4.10D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×D4.10D4, 2- 1+4.2C6, C4≀C24C6, C4⋊Q81C6, C4.30(C6×D4), (C3×D4).44D4, D4.10(C3×D4), (C2×C12).25D4, C8.C222C6, (C3×Q8).44D4, Q8.15(C3×D4), C4.10D42C6, C12.391(C2×D4), C42.13(C2×C6), C22.17(C6×D4), C6.103C22≀C2, M4(2).2(C2×C6), (C4×C12).255C22, (C2×C12).612C23, (C6×Q8).158C22, (C3×2- 1+4).2C2, (C3×M4(2)).16C22, (C3×C4≀C2)⋊8C2, (C3×C4⋊Q8)⋊22C2, (C2×C4).6(C3×D4), C4○D4.9(C2×C6), (C2×Q8).5(C2×C6), (C2×C6).412(C2×D4), (C3×C8.C22)⋊9C2, (C2×C4).7(C22×C6), C2.17(C3×C22≀C2), (C3×C4.10D4)⋊6C2, (C3×C4○D4).34C22, SmallGroup(192,889)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×D4.10D4
C1C2C22C2×C4C2×C12C6×Q8C3×C8.C22 — C3×D4.10D4
C1C2C2×C4 — C3×D4.10D4
C1C6C2×C12 — C3×D4.10D4

Generators and relations for C3×D4.10D4
 G = < a,b,c,d,e | a3=b4=c2=1, d4=e2=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=ebe-1=b-1, dcd-1=bc, ece-1=b-1c, ede-1=d3 >

Subgroups: 242 in 142 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C12, C12, C2×C6, C2×C6, C42, C4⋊C4, M4(2), SD16, Q16, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C4.10D4, C4≀C2, C4⋊Q8, C8.C22, 2- 1+4, C4×C12, C3×C4⋊C4, C3×M4(2), C3×SD16, C3×Q16, C6×Q8, C6×Q8, C3×C4○D4, C3×C4○D4, D4.10D4, C3×C4.10D4, C3×C4≀C2, C3×C4⋊Q8, C3×C8.C22, C3×2- 1+4, C3×D4.10D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C3×D4, C22×C6, C22≀C2, C6×D4, D4.10D4, C3×C22≀C2, C3×D4.10D4

Smallest permutation representation of C3×D4.10D4
On 48 points
Generators in S48
(1 34 45)(2 35 46)(3 36 47)(4 37 48)(5 38 41)(6 39 42)(7 40 43)(8 33 44)(9 19 32)(10 20 25)(11 21 26)(12 22 27)(13 23 28)(14 24 29)(15 17 30)(16 18 31)
(1 7 5 3)(2 4 6 8)(9 15 13 11)(10 12 14 16)(17 23 21 19)(18 20 22 24)(25 27 29 31)(26 32 30 28)(33 35 37 39)(34 40 38 36)(41 47 45 43)(42 44 46 48)
(1 6)(2 5)(3 8)(4 7)(9 14)(10 13)(11 16)(12 15)(17 22)(18 21)(19 24)(20 23)(25 28)(26 31)(27 30)(29 32)(33 36)(34 39)(35 38)(37 40)(41 46)(42 45)(43 48)(44 47)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 21 5 17)(2 24 6 20)(3 19 7 23)(4 22 8 18)(9 43 13 47)(10 46 14 42)(11 41 15 45)(12 44 16 48)(25 35 29 39)(26 38 30 34)(27 33 31 37)(28 36 32 40)

G:=sub<Sym(48)| (1,34,45)(2,35,46)(3,36,47)(4,37,48)(5,38,41)(6,39,42)(7,40,43)(8,33,44)(9,19,32)(10,20,25)(11,21,26)(12,22,27)(13,23,28)(14,24,29)(15,17,30)(16,18,31), (1,7,5,3)(2,4,6,8)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,47,45,43)(42,44,46,48), (1,6)(2,5)(3,8)(4,7)(9,14)(10,13)(11,16)(12,15)(17,22)(18,21)(19,24)(20,23)(25,28)(26,31)(27,30)(29,32)(33,36)(34,39)(35,38)(37,40)(41,46)(42,45)(43,48)(44,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,5,17)(2,24,6,20)(3,19,7,23)(4,22,8,18)(9,43,13,47)(10,46,14,42)(11,41,15,45)(12,44,16,48)(25,35,29,39)(26,38,30,34)(27,33,31,37)(28,36,32,40)>;

G:=Group( (1,34,45)(2,35,46)(3,36,47)(4,37,48)(5,38,41)(6,39,42)(7,40,43)(8,33,44)(9,19,32)(10,20,25)(11,21,26)(12,22,27)(13,23,28)(14,24,29)(15,17,30)(16,18,31), (1,7,5,3)(2,4,6,8)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24)(25,27,29,31)(26,32,30,28)(33,35,37,39)(34,40,38,36)(41,47,45,43)(42,44,46,48), (1,6)(2,5)(3,8)(4,7)(9,14)(10,13)(11,16)(12,15)(17,22)(18,21)(19,24)(20,23)(25,28)(26,31)(27,30)(29,32)(33,36)(34,39)(35,38)(37,40)(41,46)(42,45)(43,48)(44,47), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,21,5,17)(2,24,6,20)(3,19,7,23)(4,22,8,18)(9,43,13,47)(10,46,14,42)(11,41,15,45)(12,44,16,48)(25,35,29,39)(26,38,30,34)(27,33,31,37)(28,36,32,40) );

G=PermutationGroup([[(1,34,45),(2,35,46),(3,36,47),(4,37,48),(5,38,41),(6,39,42),(7,40,43),(8,33,44),(9,19,32),(10,20,25),(11,21,26),(12,22,27),(13,23,28),(14,24,29),(15,17,30),(16,18,31)], [(1,7,5,3),(2,4,6,8),(9,15,13,11),(10,12,14,16),(17,23,21,19),(18,20,22,24),(25,27,29,31),(26,32,30,28),(33,35,37,39),(34,40,38,36),(41,47,45,43),(42,44,46,48)], [(1,6),(2,5),(3,8),(4,7),(9,14),(10,13),(11,16),(12,15),(17,22),(18,21),(19,24),(20,23),(25,28),(26,31),(27,30),(29,32),(33,36),(34,39),(35,38),(37,40),(41,46),(42,45),(43,48),(44,47)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,21,5,17),(2,24,6,20),(3,19,7,23),(4,22,8,18),(9,43,13,47),(10,46,14,42),(11,41,15,45),(12,44,16,48),(25,35,29,39),(26,38,30,34),(27,33,31,37),(28,36,32,40)]])

48 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C···4H4I6A6B6C6D6E6F6G6H8A8B12A12B12C12D12E···12P12Q12R24A24B24C24D
order1222233444···4466666666881212121212···12121224242424
size1124411224···48112244448822224···4888888

48 irreducible representations

dim11111111111122222244
type+++++++++-
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4D4C3×D4C3×D4C3×D4D4.10D4C3×D4.10D4
kernelC3×D4.10D4C3×C4.10D4C3×C4≀C2C3×C4⋊Q8C3×C8.C22C3×2- 1+4D4.10D4C4.10D4C4≀C2C4⋊Q8C8.C222- 1+4C2×C12C3×D4C3×Q8C2×C4D4Q8C3C1
# reps11212122424222244424

Matrix representation of C3×D4.10D4 in GL4(𝔽7) generated by

4000
0400
0040
0004
,
2310
1104
6552
1456
,
2326
6545
2655
4552
,
4336
2414
0556
1111
,
0150
6442
0221
2211
G:=sub<GL(4,GF(7))| [4,0,0,0,0,4,0,0,0,0,4,0,0,0,0,4],[2,1,6,1,3,1,5,4,1,0,5,5,0,4,2,6],[2,6,2,4,3,5,6,5,2,4,5,5,6,5,5,2],[4,2,0,1,3,4,5,1,3,1,5,1,6,4,6,1],[0,6,0,2,1,4,2,2,5,4,2,1,0,2,1,1] >;

C3×D4.10D4 in GAP, Magma, Sage, TeX

C_3\times D_4._{10}D_4
% in TeX

G:=Group("C3xD4.10D4");
// GroupNames label

G:=SmallGroup(192,889);
// by ID

G=gap.SmallGroup(192,889);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,672,365,1094,520,4204,2111,1068,172,3036]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=1,d^4=e^2=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=e*b*e^-1=b^-1,d*c*d^-1=b*c,e*c*e^-1=b^-1*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽