Copied to
clipboard

G = C3×D4.8D4order 192 = 26·3

Direct product of C3 and D4.8D4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×D4.8D4, 2- 1+44C6, C4≀C22C6, C8⋊C222C6, D4.8(C3×D4), C4.28(C6×D4), (C3×D4).42D4, (C2×C12).24D4, C4.4D41C6, (C3×Q8).42D4, Q8.13(C3×D4), C4.10D41C6, C12.389(C2×D4), C42.12(C2×C6), C22.15(C6×D4), C6.101C22≀C2, M4(2).1(C2×C6), (C4×C12).254C22, (C2×C12).610C23, (C6×D4).181C22, (C3×2- 1+4)⋊6C2, (C6×Q8).157C22, (C3×M4(2)).15C22, (C3×C4≀C2)⋊6C2, (C2×C4).5(C3×D4), (C3×C8⋊C22)⋊9C2, C4○D4.7(C2×C6), (C2×D4).6(C2×C6), (C2×Q8).4(C2×C6), (C2×C6).410(C2×D4), (C2×C4).5(C22×C6), C2.15(C3×C22≀C2), (C3×C4.10D4)⋊5C2, (C3×C4.4D4)⋊21C2, (C3×C4○D4).32C22, SmallGroup(192,887)

Series: Derived Chief Lower central Upper central

C1C2×C4 — C3×D4.8D4
C1C2C22C2×C4C2×C12C6×D4C3×C8⋊C22 — C3×D4.8D4
C1C2C2×C4 — C3×D4.8D4
C1C6C2×C12 — C3×D4.8D4

Generators and relations for C3×D4.8D4
 G = < a,b,c,d,e | a3=b4=c2=e2=1, d4=b2, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=ebe=b-1, dcd-1=bc, ece=b-1c, ede=b2d3 >

Subgroups: 274 in 146 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, M4(2), D8, SD16, C2×D4, C2×Q8, C2×Q8, C4○D4, C4○D4, C24, C2×C12, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C3×Q8, C22×C6, C4.10D4, C4≀C2, C4.4D4, C8⋊C22, 2- 1+4, C4×C12, C3×C22⋊C4, C3×M4(2), C3×D8, C3×SD16, C6×D4, C6×Q8, C6×Q8, C3×C4○D4, C3×C4○D4, D4.8D4, C3×C4.10D4, C3×C4≀C2, C3×C4.4D4, C3×C8⋊C22, C3×2- 1+4, C3×D4.8D4
Quotients: C1, C2, C3, C22, C6, D4, C23, C2×C6, C2×D4, C3×D4, C22×C6, C22≀C2, C6×D4, D4.8D4, C3×C22≀C2, C3×D4.8D4

Smallest permutation representation of C3×D4.8D4
On 48 points
Generators in S48
(1 33 18)(2 34 19)(3 35 20)(4 36 21)(5 37 22)(6 38 23)(7 39 24)(8 40 17)(9 42 29)(10 43 30)(11 44 31)(12 45 32)(13 46 25)(14 47 26)(15 48 27)(16 41 28)
(1 3 5 7)(2 8 6 4)(9 15 13 11)(10 12 14 16)(17 23 21 19)(18 20 22 24)(25 31 29 27)(26 28 30 32)(33 35 37 39)(34 40 38 36)(41 43 45 47)(42 48 46 44)
(1 48)(2 43)(3 42)(4 45)(5 44)(6 47)(7 46)(8 41)(9 20)(10 19)(11 22)(12 21)(13 24)(14 23)(15 18)(16 17)(25 39)(26 38)(27 33)(28 40)(29 35)(30 34)(31 37)(32 36)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(2 8)(3 7)(4 6)(9 11)(12 16)(13 15)(17 19)(20 24)(21 23)(25 27)(28 32)(29 31)(34 40)(35 39)(36 38)(41 45)(42 44)(46 48)

G:=sub<Sym(48)| (1,33,18)(2,34,19)(3,35,20)(4,36,21)(5,37,22)(6,38,23)(7,39,24)(8,40,17)(9,42,29)(10,43,30)(11,44,31)(12,45,32)(13,46,25)(14,47,26)(15,48,27)(16,41,28), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44), (1,48)(2,43)(3,42)(4,45)(5,44)(6,47)(7,46)(8,41)(9,20)(10,19)(11,22)(12,21)(13,24)(14,23)(15,18)(16,17)(25,39)(26,38)(27,33)(28,40)(29,35)(30,34)(31,37)(32,36), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,19)(20,24)(21,23)(25,27)(28,32)(29,31)(34,40)(35,39)(36,38)(41,45)(42,44)(46,48)>;

G:=Group( (1,33,18)(2,34,19)(3,35,20)(4,36,21)(5,37,22)(6,38,23)(7,39,24)(8,40,17)(9,42,29)(10,43,30)(11,44,31)(12,45,32)(13,46,25)(14,47,26)(15,48,27)(16,41,28), (1,3,5,7)(2,8,6,4)(9,15,13,11)(10,12,14,16)(17,23,21,19)(18,20,22,24)(25,31,29,27)(26,28,30,32)(33,35,37,39)(34,40,38,36)(41,43,45,47)(42,48,46,44), (1,48)(2,43)(3,42)(4,45)(5,44)(6,47)(7,46)(8,41)(9,20)(10,19)(11,22)(12,21)(13,24)(14,23)(15,18)(16,17)(25,39)(26,38)(27,33)(28,40)(29,35)(30,34)(31,37)(32,36), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (2,8)(3,7)(4,6)(9,11)(12,16)(13,15)(17,19)(20,24)(21,23)(25,27)(28,32)(29,31)(34,40)(35,39)(36,38)(41,45)(42,44)(46,48) );

G=PermutationGroup([[(1,33,18),(2,34,19),(3,35,20),(4,36,21),(5,37,22),(6,38,23),(7,39,24),(8,40,17),(9,42,29),(10,43,30),(11,44,31),(12,45,32),(13,46,25),(14,47,26),(15,48,27),(16,41,28)], [(1,3,5,7),(2,8,6,4),(9,15,13,11),(10,12,14,16),(17,23,21,19),(18,20,22,24),(25,31,29,27),(26,28,30,32),(33,35,37,39),(34,40,38,36),(41,43,45,47),(42,48,46,44)], [(1,48),(2,43),(3,42),(4,45),(5,44),(6,47),(7,46),(8,41),(9,20),(10,19),(11,22),(12,21),(13,24),(14,23),(15,18),(16,17),(25,39),(26,38),(27,33),(28,40),(29,35),(30,34),(31,37),(32,36)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(2,8),(3,7),(4,6),(9,11),(12,16),(13,15),(17,19),(20,24),(21,23),(25,27),(28,32),(29,31),(34,40),(35,39),(36,38),(41,45),(42,44),(46,48)]])

48 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C···4H6A6B6C6D6E6F6G6H6I6J8A8B12A12B12C12D12E···12P24A24B24C24D
order12222233444···46666666666881212121212···1224242424
size11244811224···411224444888822224···48888

48 irreducible representations

dim11111111111122222244
type+++++++++
imageC1C2C2C2C2C2C3C6C6C6C6C6D4D4D4C3×D4C3×D4C3×D4D4.8D4C3×D4.8D4
kernelC3×D4.8D4C3×C4.10D4C3×C4≀C2C3×C4.4D4C3×C8⋊C22C3×2- 1+4D4.8D4C4.10D4C4≀C2C4.4D4C8⋊C222- 1+4C2×C12C3×D4C3×Q8C2×C4D4Q8C3C1
# reps11212122424222244424

Matrix representation of C3×D4.8D4 in GL4(𝔽73) generated by

8000
0800
0080
0008
,
07200
1000
00072
0010
,
00027
00270
04600
46000
,
0010
00072
07200
72000
,
1000
07200
00072
00720
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[0,1,0,0,72,0,0,0,0,0,0,1,0,0,72,0],[0,0,0,46,0,0,46,0,0,27,0,0,27,0,0,0],[0,0,0,72,0,0,72,0,1,0,0,0,0,72,0,0],[1,0,0,0,0,72,0,0,0,0,0,72,0,0,72,0] >;

C3×D4.8D4 in GAP, Magma, Sage, TeX

C_3\times D_4._8D_4
% in TeX

G:=Group("C3xD4.8D4");
// GroupNames label

G:=SmallGroup(192,887);
// by ID

G=gap.SmallGroup(192,887);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-2,-2,-2,365,1094,520,4204,2111,1068,172,3036]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^4=c^2=e^2=1,d^4=b^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=e*b*e=b^-1,d*c*d^-1=b*c,e*c*e=b^-1*c,e*d*e=b^2*d^3>;
// generators/relations

׿
×
𝔽