extension | φ:Q→Aut N | d | ρ | Label | ID |
C6.12+ (1+4) = C23⋊3Dic6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.1ES+(2,2) | 192,1042 |
C6.22+ (1+4) = C24.35D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.2ES+(2,2) | 192,1045 |
C6.32+ (1+4) = C24.38D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.3ES+(2,2) | 192,1049 |
C6.42+ (1+4) = C23⋊4D12 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.4ES+(2,2) | 192,1052 |
C6.52+ (1+4) = C24.41D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.5ES+(2,2) | 192,1053 |
C6.62+ (1+4) = C24.42D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.6ES+(2,2) | 192,1054 |
C6.72+ (1+4) = C6.72+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.7ES+(2,2) | 192,1059 |
C6.82+ (1+4) = C6.82+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.8ES+(2,2) | 192,1063 |
C6.92+ (1+4) = C6.2+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.9ES+(2,2) | 192,1069 |
C6.102+ (1+4) = C6.102+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.10ES+(2,2) | 192,1070 |
C6.112+ (1+4) = C6.112+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.11ES+(2,2) | 192,1073 |
C6.122+ (1+4) = C6.62- (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.12ES+(2,2) | 192,1074 |
C6.132+ (1+4) = D4⋊5Dic6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.13ES+(2,2) | 192,1098 |
C6.142+ (1+4) = C42.104D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.14ES+(2,2) | 192,1099 |
C6.152+ (1+4) = C42⋊13D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.15ES+(2,2) | 192,1104 |
C6.162+ (1+4) = C42.108D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.16ES+(2,2) | 192,1105 |
C6.172+ (1+4) = D4⋊5D12 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.17ES+(2,2) | 192,1113 |
C6.182+ (1+4) = C42⋊18D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.18ES+(2,2) | 192,1115 |
C6.192+ (1+4) = C42.113D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.19ES+(2,2) | 192,1117 |
C6.202+ (1+4) = C42.114D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.20ES+(2,2) | 192,1118 |
C6.212+ (1+4) = C42⋊19D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.21ES+(2,2) | 192,1119 |
C6.222+ (1+4) = C42.115D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.22ES+(2,2) | 192,1120 |
C6.232+ (1+4) = C42.118D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.23ES+(2,2) | 192,1123 |
C6.242+ (1+4) = C24.43D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.24ES+(2,2) | 192,1146 |
C6.252+ (1+4) = C24⋊7D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.25ES+(2,2) | 192,1148 |
C6.262+ (1+4) = C24⋊8D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.26ES+(2,2) | 192,1149 |
C6.272+ (1+4) = C24.44D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.27ES+(2,2) | 192,1150 |
C6.282+ (1+4) = C24.45D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.28ES+(2,2) | 192,1151 |
C6.292+ (1+4) = C24.46D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.29ES+(2,2) | 192,1152 |
C6.302+ (1+4) = C24⋊9D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.30ES+(2,2) | 192,1153 |
C6.312+ (1+4) = C24.47D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.31ES+(2,2) | 192,1154 |
C6.322+ (1+4) = C6.682- (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.32ES+(2,2) | 192,1156 |
C6.332+ (1+4) = Dic6⋊20D4 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.33ES+(2,2) | 192,1158 |
C6.342+ (1+4) = C6.342+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.34ES+(2,2) | 192,1160 |
C6.352+ (1+4) = C6.702- (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.35ES+(2,2) | 192,1161 |
C6.362+ (1+4) = C6.712- (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.36ES+(2,2) | 192,1162 |
C6.372+ (1+4) = C6.372+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.37ES+(2,2) | 192,1164 |
C6.382+ (1+4) = C6.382+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.38ES+(2,2) | 192,1166 |
C6.392+ (1+4) = C6.722- (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.39ES+(2,2) | 192,1167 |
C6.402+ (1+4) = C6.402+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.40ES+(2,2) | 192,1169 |
C6.412+ (1+4) = D12⋊20D4 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.41ES+(2,2) | 192,1171 |
C6.422+ (1+4) = C6.422+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.42ES+(2,2) | 192,1172 |
C6.432+ (1+4) = C6.432+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.43ES+(2,2) | 192,1173 |
C6.442+ (1+4) = C6.442+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.44ES+(2,2) | 192,1174 |
C6.452+ (1+4) = C6.452+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.45ES+(2,2) | 192,1175 |
C6.462+ (1+4) = C6.462+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.46ES+(2,2) | 192,1176 |
C6.472+ (1+4) = C6.472+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.47ES+(2,2) | 192,1178 |
C6.482+ (1+4) = C6.482+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.48ES+(2,2) | 192,1179 |
C6.492+ (1+4) = C6.492+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.49ES+(2,2) | 192,1180 |
C6.502+ (1+4) = C6.502+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.50ES+(2,2) | 192,1182 |
C6.512+ (1+4) = C6.512+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.51ES+(2,2) | 192,1193 |
C6.522+ (1+4) = C6.522+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.52ES+(2,2) | 192,1195 |
C6.532+ (1+4) = C6.532+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.53ES+(2,2) | 192,1196 |
C6.542+ (1+4) = C6.202- (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.54ES+(2,2) | 192,1197 |
C6.552+ (1+4) = C6.552+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.55ES+(2,2) | 192,1199 |
C6.562+ (1+4) = C6.562+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.56ES+(2,2) | 192,1203 |
C6.572+ (1+4) = C6.572+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.57ES+(2,2) | 192,1204 |
C6.582+ (1+4) = C6.582+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.58ES+(2,2) | 192,1205 |
C6.592+ (1+4) = C6.592+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.59ES+(2,2) | 192,1206 |
C6.602+ (1+4) = C6.812- (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.60ES+(2,2) | 192,1210 |
C6.612+ (1+4) = C6.612+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.61ES+(2,2) | 192,1216 |
C6.622+ (1+4) = C6.622+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.62ES+(2,2) | 192,1218 |
C6.632+ (1+4) = C6.632+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.63ES+(2,2) | 192,1219 |
C6.642+ (1+4) = C6.642+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.64ES+(2,2) | 192,1220 |
C6.652+ (1+4) = C6.652+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.65ES+(2,2) | 192,1221 |
C6.662+ (1+4) = C6.662+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.66ES+(2,2) | 192,1222 |
C6.672+ (1+4) = C6.672+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.67ES+(2,2) | 192,1223 |
C6.682+ (1+4) = C6.682+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.68ES+(2,2) | 192,1225 |
C6.692+ (1+4) = C6.692+ (1+4) | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.69ES+(2,2) | 192,1226 |
C6.702+ (1+4) = C42.137D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.70ES+(2,2) | 192,1228 |
C6.712+ (1+4) = C42.138D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.71ES+(2,2) | 192,1229 |
C6.722+ (1+4) = C42.140D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.72ES+(2,2) | 192,1231 |
C6.732+ (1+4) = C42⋊23D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.73ES+(2,2) | 192,1238 |
C6.742+ (1+4) = C42.145D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.74ES+(2,2) | 192,1243 |
C6.752+ (1+4) = C42.166D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.75ES+(2,2) | 192,1272 |
C6.762+ (1+4) = C42⋊28D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.76ES+(2,2) | 192,1274 |
C6.772+ (1+4) = D12⋊11D4 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.77ES+(2,2) | 192,1276 |
C6.782+ (1+4) = Dic6⋊11D4 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.78ES+(2,2) | 192,1277 |
C6.792+ (1+4) = C42.168D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.79ES+(2,2) | 192,1278 |
C6.802+ (1+4) = C42⋊30D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.80ES+(2,2) | 192,1279 |
C6.812+ (1+4) = Dic6⋊9Q8 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 192 | | C6.81ES+(2,2) | 192,1281 |
C6.822+ (1+4) = C42.174D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.82ES+(2,2) | 192,1288 |
C6.832+ (1+4) = D12⋊9Q8 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.83ES+(2,2) | 192,1289 |
C6.842+ (1+4) = C42.178D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.84ES+(2,2) | 192,1292 |
C6.852+ (1+4) = C42.179D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.85ES+(2,2) | 192,1293 |
C6.862+ (1+4) = C42.180D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 96 | | C6.86ES+(2,2) | 192,1294 |
C6.872+ (1+4) = C24.49D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.87ES+(2,2) | 192,1357 |
C6.882+ (1+4) = D4×C3⋊D4 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.88ES+(2,2) | 192,1360 |
C6.892+ (1+4) = C24⋊12D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.89ES+(2,2) | 192,1363 |
C6.902+ (1+4) = C24.52D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.90ES+(2,2) | 192,1364 |
C6.912+ (1+4) = C24.53D6 | φ: 2+ (1+4)/C2×D4 → C2 ⊆ Aut C6 | 48 | | C6.91ES+(2,2) | 192,1365 |
C6.922+ (1+4) = C42.90D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.92ES+(2,2) | 192,1078 |
C6.932+ (1+4) = C42⋊9D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.93ES+(2,2) | 192,1080 |
C6.942+ (1+4) = C42.91D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.94ES+(2,2) | 192,1082 |
C6.952+ (1+4) = C42⋊11D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.95ES+(2,2) | 192,1084 |
C6.962+ (1+4) = C42⋊12D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.96ES+(2,2) | 192,1086 |
C6.972+ (1+4) = C42.95D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.97ES+(2,2) | 192,1089 |
C6.982+ (1+4) = C42.97D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.98ES+(2,2) | 192,1091 |
C6.992+ (1+4) = C42.99D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.99ES+(2,2) | 192,1093 |
C6.1002+ (1+4) = C42.100D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.100ES+(2,2) | 192,1094 |
C6.1012+ (1+4) = D4⋊6Dic6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.101ES+(2,2) | 192,1102 |
C6.1022+ (1+4) = D4×D12 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.102ES+(2,2) | 192,1108 |
C6.1032+ (1+4) = D12⋊23D4 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.103ES+(2,2) | 192,1109 |
C6.1042+ (1+4) = Dic6⋊24D4 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.104ES+(2,2) | 192,1112 |
C6.1052+ (1+4) = C42.116D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.105ES+(2,2) | 192,1121 |
C6.1062+ (1+4) = C42.117D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.106ES+(2,2) | 192,1122 |
C6.1072+ (1+4) = C42.119D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.107ES+(2,2) | 192,1124 |
C6.1082+ (1+4) = Q8×Dic6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 192 | | C6.108ES+(2,2) | 192,1125 |
C6.1092+ (1+4) = C42.126D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.109ES+(2,2) | 192,1133 |
C6.1102+ (1+4) = Q8⋊7D12 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.110ES+(2,2) | 192,1136 |
C6.1112+ (1+4) = D12⋊10Q8 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.111ES+(2,2) | 192,1138 |
C6.1122+ (1+4) = C42.133D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.112ES+(2,2) | 192,1141 |
C6.1132+ (1+4) = C42.136D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.113ES+(2,2) | 192,1144 |
C6.1142+ (1+4) = D12⋊19D4 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.114ES+(2,2) | 192,1168 |
C6.1152+ (1+4) = C6.1152+ (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.115ES+(2,2) | 192,1177 |
C6.1162+ (1+4) = C6.172- (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.116ES+(2,2) | 192,1188 |
C6.1172+ (1+4) = D12⋊21D4 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.117ES+(2,2) | 192,1189 |
C6.1182+ (1+4) = C6.1182+ (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.118ES+(2,2) | 192,1194 |
C6.1192+ (1+4) = C6.242- (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.119ES+(2,2) | 192,1202 |
C6.1202+ (1+4) = C6.1202+ (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.120ES+(2,2) | 192,1212 |
C6.1212+ (1+4) = C6.1212+ (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.121ES+(2,2) | 192,1213 |
C6.1222+ (1+4) = C6.1222+ (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.122ES+(2,2) | 192,1217 |
C6.1232+ (1+4) = C6.852- (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.123ES+(2,2) | 192,1224 |
C6.1242+ (1+4) = C42⋊20D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.124ES+(2,2) | 192,1233 |
C6.1252+ (1+4) = D12⋊10D4 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.125ES+(2,2) | 192,1235 |
C6.1262+ (1+4) = C42⋊22D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.126ES+(2,2) | 192,1237 |
C6.1272+ (1+4) = C42.143D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.127ES+(2,2) | 192,1240 |
C6.1282+ (1+4) = C42.144D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.128ES+(2,2) | 192,1241 |
C6.1292+ (1+4) = C42⋊24D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.129ES+(2,2) | 192,1242 |
C6.1302+ (1+4) = C42.148D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.130ES+(2,2) | 192,1248 |
C6.1312+ (1+4) = D12⋊7Q8 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.131ES+(2,2) | 192,1249 |
C6.1322+ (1+4) = C42.150D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.132ES+(2,2) | 192,1251 |
C6.1332+ (1+4) = C42.153D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.133ES+(2,2) | 192,1254 |
C6.1342+ (1+4) = C42.155D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.134ES+(2,2) | 192,1256 |
C6.1352+ (1+4) = C42.157D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.135ES+(2,2) | 192,1258 |
C6.1362+ (1+4) = C42.158D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.136ES+(2,2) | 192,1259 |
C6.1372+ (1+4) = C42⋊25D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.137ES+(2,2) | 192,1263 |
C6.1382+ (1+4) = C42⋊26D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.138ES+(2,2) | 192,1264 |
C6.1392+ (1+4) = C42.161D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.139ES+(2,2) | 192,1266 |
C6.1402+ (1+4) = C42.163D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.140ES+(2,2) | 192,1268 |
C6.1412+ (1+4) = C42.164D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.141ES+(2,2) | 192,1269 |
C6.1422+ (1+4) = C42⋊27D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.142ES+(2,2) | 192,1270 |
C6.1432+ (1+4) = C42.165D6 | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.143ES+(2,2) | 192,1271 |
C6.1442+ (1+4) = C6.1062- (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.144ES+(2,2) | 192,1386 |
C6.1452+ (1+4) = C6.1452+ (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.145ES+(2,2) | 192,1388 |
C6.1462+ (1+4) = C6.1462+ (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 48 | | C6.146ES+(2,2) | 192,1389 |
C6.1472+ (1+4) = C6.1082- (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.147ES+(2,2) | 192,1392 |
C6.1482+ (1+4) = C6.1482+ (1+4) | φ: 2+ (1+4)/C4○D4 → C2 ⊆ Aut C6 | 96 | | C6.148ES+(2,2) | 192,1393 |
C6.1492+ (1+4) = C3×C22.11C24 | central extension (φ=1) | 48 | | C6.149ES+(2,2) | 192,1407 |
C6.1502+ (1+4) = C3×C23.33C23 | central extension (φ=1) | 96 | | C6.150ES+(2,2) | 192,1409 |
C6.1512+ (1+4) = C3×C23⋊3D4 | central extension (φ=1) | 48 | | C6.151ES+(2,2) | 192,1423 |
C6.1522+ (1+4) = C3×C22.29C24 | central extension (φ=1) | 48 | | C6.152ES+(2,2) | 192,1424 |
C6.1532+ (1+4) = C3×C22.31C24 | central extension (φ=1) | 96 | | C6.153ES+(2,2) | 192,1426 |
C6.1542+ (1+4) = C3×C22.32C24 | central extension (φ=1) | 48 | | C6.154ES+(2,2) | 192,1427 |
C6.1552+ (1+4) = C3×C22.33C24 | central extension (φ=1) | 96 | | C6.155ES+(2,2) | 192,1428 |
C6.1562+ (1+4) = C3×C22.34C24 | central extension (φ=1) | 96 | | C6.156ES+(2,2) | 192,1429 |
C6.1572+ (1+4) = C3×C22.36C24 | central extension (φ=1) | 96 | | C6.157ES+(2,2) | 192,1431 |
C6.1582+ (1+4) = C3×C23⋊2Q8 | central extension (φ=1) | 48 | | C6.158ES+(2,2) | 192,1432 |
C6.1592+ (1+4) = C3×C23.41C23 | central extension (φ=1) | 96 | | C6.159ES+(2,2) | 192,1433 |
C6.1602+ (1+4) = C3×D42 | central extension (φ=1) | 48 | | C6.160ES+(2,2) | 192,1434 |
C6.1612+ (1+4) = C3×D4⋊5D4 | central extension (φ=1) | 48 | | C6.161ES+(2,2) | 192,1435 |
C6.1622+ (1+4) = C3×Q8⋊6D4 | central extension (φ=1) | 96 | | C6.162ES+(2,2) | 192,1439 |
C6.1632+ (1+4) = C3×C22.45C24 | central extension (φ=1) | 48 | | C6.163ES+(2,2) | 192,1440 |
C6.1642+ (1+4) = C3×C22.47C24 | central extension (φ=1) | 96 | | C6.164ES+(2,2) | 192,1442 |
C6.1652+ (1+4) = C3×D4⋊3Q8 | central extension (φ=1) | 96 | | C6.165ES+(2,2) | 192,1443 |
C6.1662+ (1+4) = C3×C22.49C24 | central extension (φ=1) | 96 | | C6.166ES+(2,2) | 192,1444 |
C6.1672+ (1+4) = C3×Q82 | central extension (φ=1) | 192 | | C6.167ES+(2,2) | 192,1447 |
C6.1682+ (1+4) = C3×C22.53C24 | central extension (φ=1) | 96 | | C6.168ES+(2,2) | 192,1448 |
C6.1692+ (1+4) = C3×C22.54C24 | central extension (φ=1) | 48 | | C6.169ES+(2,2) | 192,1449 |
C6.1702+ (1+4) = C3×C24⋊C22 | central extension (φ=1) | 48 | | C6.170ES+(2,2) | 192,1450 |
C6.1712+ (1+4) = C3×C22.56C24 | central extension (φ=1) | 96 | | C6.171ES+(2,2) | 192,1451 |
C6.1722+ (1+4) = C3×C22.57C24 | central extension (φ=1) | 96 | | C6.172ES+(2,2) | 192,1452 |