Copied to
clipboard

?

G = D4×D12order 192 = 26·3

Direct product of D4 and D12

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D4×D12, C4215D6, C6.1022+ (1+4), C31(D42), C44(S3×D4), C4⋊C446D6, D65(C2×D4), (C3×D4)⋊9D4, C121(C2×D4), C41(C2×D12), (C4×D4)⋊11S3, D6⋊D45C2, (D4×C12)⋊13C2, (C4×D12)⋊27C2, C127D47C2, D6⋊C44C22, C22⋊C445D6, C222(C2×D12), (C22×C4)⋊14D6, C12⋊D414C2, C4⋊D1211C2, (C4×C12)⋊18C22, (C2×D4).247D6, (C22×D12)⋊8C2, (C2×C6).93C24, C6.15(C22×D4), C2.14(D4○D12), (C2×D12)⋊16C22, (S3×C23)⋊5C22, C4⋊Dic358C22, (C22×C12)⋊9C22, C2.17(C22×D12), (C2×C12).158C23, (C6×D4).256C22, (C22×C6).163C23, C23.181(C22×S3), C22.118(S3×C23), (C2×Dic3).39C23, (C22×S3).171C23, (C2×S3×D4)⋊3C2, (C2×C6)⋊1(C2×D4), C2.21(C2×S3×D4), (S3×C2×C4)⋊2C22, (C3×C4⋊C4)⋊58C22, (C2×C3⋊D4)⋊2C22, (C3×C22⋊C4)⋊49C22, (C2×C4).157(C22×S3), SmallGroup(192,1108)

Series: Derived Chief Lower central Upper central

C1C2×C6 — D4×D12
C1C3C6C2×C6C22×S3S3×C23C2×S3×D4 — D4×D12
C3C2×C6 — D4×D12

Subgroups: 1432 in 428 conjugacy classes, 123 normal (29 characteristic)
C1, C2 [×3], C2 [×12], C3, C4 [×4], C4 [×5], C22, C22 [×4], C22 [×40], S3 [×8], C6 [×3], C6 [×4], C2×C4 [×3], C2×C4 [×2], C2×C4 [×10], D4 [×4], D4 [×30], C23 [×2], C23 [×26], Dic3 [×2], C12 [×4], C12 [×3], D6 [×4], D6 [×32], C2×C6, C2×C6 [×4], C2×C6 [×4], C42, C22⋊C4 [×2], C22⋊C4 [×6], C4⋊C4, C4⋊C4, C22×C4 [×2], C22×C4 [×2], C2×D4, C2×D4 [×31], C24 [×4], C4×S3 [×4], D12 [×4], D12 [×18], C2×Dic3 [×2], C3⋊D4 [×8], C2×C12 [×3], C2×C12 [×2], C2×C12 [×4], C3×D4 [×4], C22×S3 [×6], C22×S3 [×20], C22×C6 [×2], C4×D4, C4×D4, C22≀C2 [×4], C4⋊D4 [×4], C41D4, C22×D4 [×4], C4⋊Dic3, D6⋊C4 [×6], C4×C12, C3×C22⋊C4 [×2], C3×C4⋊C4, S3×C2×C4 [×2], C2×D12, C2×D12 [×10], C2×D12 [×8], S3×D4 [×8], C2×C3⋊D4 [×4], C22×C12 [×2], C6×D4, S3×C23 [×4], D42, C4×D12, C4⋊D12, D6⋊D4 [×4], C12⋊D4 [×2], C127D4 [×2], D4×C12, C22×D12 [×2], C2×S3×D4 [×2], D4×D12

Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×8], C23 [×15], D6 [×7], C2×D4 [×12], C24, D12 [×4], C22×S3 [×7], C22×D4 [×2], 2+ (1+4), C2×D12 [×6], S3×D4 [×2], S3×C23, D42, C22×D12, C2×S3×D4, D4○D12, D4×D12

Generators and relations
 G = < a,b,c,d | a4=b2=c12=d2=1, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Smallest permutation representation
On 48 points
Generators in S48
(1 41 33 19)(2 42 34 20)(3 43 35 21)(4 44 36 22)(5 45 25 23)(6 46 26 24)(7 47 27 13)(8 48 28 14)(9 37 29 15)(10 38 30 16)(11 39 31 17)(12 40 32 18)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 19)(8 20)(9 21)(10 22)(11 23)(12 24)(25 39)(26 40)(27 41)(28 42)(29 43)(30 44)(31 45)(32 46)(33 47)(34 48)(35 37)(36 38)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 3)(4 12)(5 11)(6 10)(7 9)(13 15)(16 24)(17 23)(18 22)(19 21)(25 31)(26 30)(27 29)(32 36)(33 35)(37 47)(38 46)(39 45)(40 44)(41 43)

G:=sub<Sym(48)| (1,41,33,19)(2,42,34,20)(3,43,35,21)(4,44,36,22)(5,45,25,23)(6,46,26,24)(7,47,27,13)(8,48,28,14)(9,37,29,15)(10,38,30,16)(11,39,31,17)(12,40,32,18), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,39)(26,40)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,37)(36,38), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21)(25,31)(26,30)(27,29)(32,36)(33,35)(37,47)(38,46)(39,45)(40,44)(41,43)>;

G:=Group( (1,41,33,19)(2,42,34,20)(3,43,35,21)(4,44,36,22)(5,45,25,23)(6,46,26,24)(7,47,27,13)(8,48,28,14)(9,37,29,15)(10,38,30,16)(11,39,31,17)(12,40,32,18), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,19)(8,20)(9,21)(10,22)(11,23)(12,24)(25,39)(26,40)(27,41)(28,42)(29,43)(30,44)(31,45)(32,46)(33,47)(34,48)(35,37)(36,38), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,3)(4,12)(5,11)(6,10)(7,9)(13,15)(16,24)(17,23)(18,22)(19,21)(25,31)(26,30)(27,29)(32,36)(33,35)(37,47)(38,46)(39,45)(40,44)(41,43) );

G=PermutationGroup([(1,41,33,19),(2,42,34,20),(3,43,35,21),(4,44,36,22),(5,45,25,23),(6,46,26,24),(7,47,27,13),(8,48,28,14),(9,37,29,15),(10,38,30,16),(11,39,31,17),(12,40,32,18)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,19),(8,20),(9,21),(10,22),(11,23),(12,24),(25,39),(26,40),(27,41),(28,42),(29,43),(30,44),(31,45),(32,46),(33,47),(34,48),(35,37),(36,38)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,3),(4,12),(5,11),(6,10),(7,9),(13,15),(16,24),(17,23),(18,22),(19,21),(25,31),(26,30),(27,29),(32,36),(33,35),(37,47),(38,46),(39,45),(40,44),(41,43)])

Matrix representation G ⊆ GL6(ℤ)

1-20000
1-10000
001000
000100
0000-10
00000-1
,
1-20000
0-10000
001000
000100
000010
000001
,
100000
010000
001100
00-1000
0000-1-2
000011
,
100000
010000
00-1-100
000100
0000-10
000011

G:=sub<GL(6,Integers())| [1,1,0,0,0,0,-2,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,-2,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1,0,0,0,0,1,0,0,0,0,0,0,0,-1,1,0,0,0,0,-2,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,-1,1,0,0,0,0,0,0,-1,1,0,0,0,0,0,1] >;

45 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J2K2L2M2N2O 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E6F6G12A12B12C12D12E···12L
order1222222222222222344444444466666661212121212···12
size11112222666612121212222224441212222444422224···4

45 irreducible representations

dim111111111222222222444
type+++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2S3D4D4D6D6D6D6D6D122+ (1+4)S3×D4D4○D12
kernelD4×D12C4×D12C4⋊D12D6⋊D4C12⋊D4C127D4D4×C12C22×D12C2×S3×D4C4×D4D12C3×D4C42C22⋊C4C4⋊C4C22×C4C2×D4D4C6C4C2
# reps111422122144121218122

In GAP, Magma, Sage, TeX

D_4\times D_{12}
% in TeX

G:=Group("D4xD12");
// GroupNames label

G:=SmallGroup(192,1108);
// by ID

G=gap.SmallGroup(192,1108);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,675,80,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^2=c^12=d^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽