Copied to
clipboard

?

G = D1210D4order 192 = 26·3

3rd semidirect product of D12 and D4 acting via D4/C4=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D1210D4, C4221D6, C6.1252+ (1+4), (C2×Q8)⋊22D6, C4.70(S3×D4), (C4×D12)⋊43C2, C39(D45D4), C22⋊C433D6, D6.24(C2×D4), C12.63(C2×D4), D611(C4○D4), D63D433C2, Dic3⋊D440C2, D6⋊D424C2, (C4×C12)⋊23C22, D6⋊C454C22, D63Q828C2, (C2×D4).173D6, C4.4D410S3, (C6×Q8)⋊13C22, C6.90(C22×D4), C23.9D642C2, C2.49(D4○D12), (C2×D12)⋊28C22, (C2×C6).220C24, C4⋊Dic360C22, (C2×C12).601C23, Dic3⋊C426C22, (C6×D4).155C22, (C22×C6).50C23, C23.52(C22×S3), C6.D433C22, (S3×C23).64C22, C22.241(S3×C23), (C22×S3).215C23, (C2×Dic3).115C23, (C2×S3×D4)⋊17C2, C2.63(C2×S3×D4), (S3×C2×C4)⋊26C22, C2.76(S3×C4○D4), (S3×C22⋊C4)⋊17C2, C6.187(C2×C4○D4), (C2×Q83S3)⋊11C2, (C3×C4.4D4)⋊12C2, (C2×C3⋊D4)⋊23C22, (C3×C22⋊C4)⋊29C22, (C2×C4).195(C22×S3), SmallGroup(192,1235)

Series: Derived Chief Lower central Upper central

C1C2×C6 — D1210D4
C1C3C6C2×C6C22×S3S3×C23C2×S3×D4 — D1210D4
C3C2×C6 — D1210D4

Subgroups: 1024 in 334 conjugacy classes, 105 normal (43 characteristic)
C1, C2 [×3], C2 [×9], C3, C4 [×2], C4 [×8], C22, C22 [×29], S3 [×7], C6 [×3], C6 [×2], C2×C4 [×3], C2×C4 [×2], C2×C4 [×14], D4 [×18], Q8 [×2], C23 [×2], C23 [×14], Dic3 [×4], C12 [×2], C12 [×4], D6 [×6], D6 [×17], C2×C6, C2×C6 [×6], C42, C22⋊C4 [×4], C22⋊C4 [×8], C4⋊C4 [×4], C22×C4 [×6], C2×D4, C2×D4 [×12], C2×Q8, C4○D4 [×4], C24 [×2], C4×S3 [×10], D12 [×4], D12 [×6], C2×Dic3 [×2], C2×Dic3 [×2], C3⋊D4 [×6], C2×C12 [×3], C2×C12 [×2], C3×D4 [×2], C3×Q8 [×2], C22×S3 [×2], C22×S3 [×2], C22×S3 [×10], C22×C6 [×2], C2×C22⋊C4 [×2], C4×D4 [×2], C22≀C2 [×2], C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4, C22×D4, C2×C4○D4, Dic3⋊C4 [×2], C4⋊Dic3 [×2], D6⋊C4 [×2], D6⋊C4 [×4], C6.D4 [×2], C4×C12, C3×C22⋊C4 [×4], S3×C2×C4 [×2], S3×C2×C4 [×4], C2×D12 [×2], C2×D12 [×2], S3×D4 [×4], Q83S3 [×4], C2×C3⋊D4 [×4], C6×D4, C6×Q8, S3×C23 [×2], D45D4, C4×D12 [×2], S3×C22⋊C4 [×2], D6⋊D4 [×2], C23.9D6 [×2], Dic3⋊D4 [×2], D63D4, D63Q8, C3×C4.4D4, C2×S3×D4, C2×Q83S3, D1210D4

Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C4○D4 [×2], C24, C22×S3 [×7], C22×D4, C2×C4○D4, 2+ (1+4), S3×D4 [×2], S3×C23, D45D4, C2×S3×D4, S3×C4○D4, D4○D12, D1210D4

Generators and relations
 G = < a,b,c,d | a12=b2=c4=d2=1, bab=a-1, ac=ca, dad=a5, cbc-1=a6b, dbd=a10b, dcd=c-1 >

Smallest permutation representation
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 24)(14 23)(15 22)(16 21)(17 20)(18 19)(25 36)(26 35)(27 34)(28 33)(29 32)(30 31)(37 44)(38 43)(39 42)(40 41)(45 48)(46 47)
(1 34 41 16)(2 35 42 17)(3 36 43 18)(4 25 44 19)(5 26 45 20)(6 27 46 21)(7 28 47 22)(8 29 48 23)(9 30 37 24)(10 31 38 13)(11 32 39 14)(12 33 40 15)
(1 28)(2 33)(3 26)(4 31)(5 36)(6 29)(7 34)(8 27)(9 32)(10 25)(11 30)(12 35)(13 44)(14 37)(15 42)(16 47)(17 40)(18 45)(19 38)(20 43)(21 48)(22 41)(23 46)(24 39)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,44)(38,43)(39,42)(40,41)(45,48)(46,47), (1,34,41,16)(2,35,42,17)(3,36,43,18)(4,25,44,19)(5,26,45,20)(6,27,46,21)(7,28,47,22)(8,29,48,23)(9,30,37,24)(10,31,38,13)(11,32,39,14)(12,33,40,15), (1,28)(2,33)(3,26)(4,31)(5,36)(6,29)(7,34)(8,27)(9,32)(10,25)(11,30)(12,35)(13,44)(14,37)(15,42)(16,47)(17,40)(18,45)(19,38)(20,43)(21,48)(22,41)(23,46)(24,39)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,24)(14,23)(15,22)(16,21)(17,20)(18,19)(25,36)(26,35)(27,34)(28,33)(29,32)(30,31)(37,44)(38,43)(39,42)(40,41)(45,48)(46,47), (1,34,41,16)(2,35,42,17)(3,36,43,18)(4,25,44,19)(5,26,45,20)(6,27,46,21)(7,28,47,22)(8,29,48,23)(9,30,37,24)(10,31,38,13)(11,32,39,14)(12,33,40,15), (1,28)(2,33)(3,26)(4,31)(5,36)(6,29)(7,34)(8,27)(9,32)(10,25)(11,30)(12,35)(13,44)(14,37)(15,42)(16,47)(17,40)(18,45)(19,38)(20,43)(21,48)(22,41)(23,46)(24,39) );

G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,24),(14,23),(15,22),(16,21),(17,20),(18,19),(25,36),(26,35),(27,34),(28,33),(29,32),(30,31),(37,44),(38,43),(39,42),(40,41),(45,48),(46,47)], [(1,34,41,16),(2,35,42,17),(3,36,43,18),(4,25,44,19),(5,26,45,20),(6,27,46,21),(7,28,47,22),(8,29,48,23),(9,30,37,24),(10,31,38,13),(11,32,39,14),(12,33,40,15)], [(1,28),(2,33),(3,26),(4,31),(5,36),(6,29),(7,34),(8,27),(9,32),(10,25),(11,30),(12,35),(13,44),(14,37),(15,42),(16,47),(17,40),(18,45),(19,38),(20,43),(21,48),(22,41),(23,46),(24,39)])

Matrix representation G ⊆ GL6(𝔽13)

050000
500000
001100
0012000
0000120
0000012
,
050000
800000
001100
0001200
0000120
0000012
,
010000
100000
001000
000100
000013
0000812
,
0120000
1200000
001000
00121200
00001210
000001

G:=sub<GL(6,GF(13))| [0,5,0,0,0,0,5,0,0,0,0,0,0,0,1,12,0,0,0,0,1,0,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,8,0,0,0,0,5,0,0,0,0,0,0,0,1,0,0,0,0,0,1,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[0,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,8,0,0,0,0,3,12],[0,12,0,0,0,0,12,0,0,0,0,0,0,0,1,12,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,10,1] >;

39 conjugacy classes

class 1 2A2B2C2D2E2F···2K2L 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C6D6E12A···12F12G12H
order1222222···2234444444444446666612···121212
size1111446···6122222244466121212222884···488

39 irreducible representations

dim1111111111122222224444
type++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2S3D4D6D6D6D6C4○D42+ (1+4)S3×D4S3×C4○D4D4○D12
kernelD1210D4C4×D12S3×C22⋊C4D6⋊D4C23.9D6Dic3⋊D4D63D4D63Q8C3×C4.4D4C2×S3×D4C2×Q83S3C4.4D4D12C42C22⋊C4C2×D4C2×Q8D6C6C4C2C2
# reps1222221111114141141222

In GAP, Magma, Sage, TeX

D_{12}\rtimes_{10}D_4
% in TeX

G:=Group("D12:10D4");
// GroupNames label

G:=SmallGroup(192,1235);
// by ID

G=gap.SmallGroup(192,1235);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,219,1571,570,297,192,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=b^2=c^4=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^5,c*b*c^-1=a^6*b,d*b*d=a^10*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽