Extensions 1→N→G→Q→1 with N=D6 and Q=M4(2)

Direct product G=NxQ with N=D6 and Q=M4(2)
dρLabelID
C2xS3xM4(2)48C2xS3xM4(2)192,1302

Semidirect products G=N:Q with N=D6 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
D6:1M4(2) = C8:9D12φ: M4(2)/C8C2 ⊆ Out D696D6:1M4(2)192,265
D6:2M4(2) = D6:2M4(2)φ: M4(2)/C8C2 ⊆ Out D696D6:2M4(2)192,287
D6:3M4(2) = D6:3M4(2)φ: M4(2)/C8C2 ⊆ Out D696D6:3M4(2)192,395
D6:4M4(2) = C24:D4φ: M4(2)/C8C2 ⊆ Out D696D6:4M4(2)192,686
D6:5M4(2) = D6:M4(2)φ: M4(2)/C2xC4C2 ⊆ Out D648D6:5M4(2)192,285
D6:6M4(2) = D6:6M4(2)φ: M4(2)/C2xC4C2 ⊆ Out D648D6:6M4(2)192,685

Non-split extensions G=N.Q with N=D6 and Q=M4(2)
extensionφ:Q→Out NdρLabelID
D6.1M4(2) = C42.182D6φ: M4(2)/C2xC4C2 ⊆ Out D696D6.1M4(2)192,264
D6.2M4(2) = C42.202D6φ: M4(2)/C2xC4C2 ⊆ Out D696D6.2M4(2)192,394
D6.3M4(2) = S3xC8:C4φ: trivial image96D6.3M4(2)192,263
D6.4M4(2) = S3xC22:C8φ: trivial image48D6.4M4(2)192,283
D6.5M4(2) = S3xC4:C8φ: trivial image96D6.5M4(2)192,391

׿
x
:
Z
F
o
wr
Q
<