Extensions 1→N→G→Q→1 with N=C2 and Q=C2×D24

Direct product G=N×Q with N=C2 and Q=C2×D24
dρLabelID
C22×D2496C2^2xD24192,1299


Non-split extensions G=N.Q with N=C2 and Q=C2×D24
extensionφ:Q→Aut NdρLabelID
C2.1(C2×D24) = C4×D24central extension (φ=1)96C2.1(C2xD24)192,251
C2.2(C2×D24) = C2×C241C4central extension (φ=1)192C2.2(C2xD24)192,664
C2.3(C2×D24) = C2×C2.D24central extension (φ=1)96C2.3(C2xD24)192,671
C2.4(C2×D24) = C248Q8central stem extension (φ=1)192C2.4(C2xD24)192,241
C2.5(C2×D24) = C4.5D24central stem extension (φ=1)96C2.5(C2xD24)192,253
C2.6(C2×D24) = C124D8central stem extension (φ=1)96C2.6(C2xD24)192,254
C2.7(C2×D24) = D1213D4central stem extension (φ=1)48C2.7(C2xD24)192,291
C2.8(C2×D24) = C22.D24central stem extension (φ=1)96C2.8(C2xD24)192,295
C2.9(C2×D24) = C4⋊D24central stem extension (φ=1)96C2.9(C2xD24)192,402
C2.10(C2×D24) = D124Q8central stem extension (φ=1)96C2.10(C2xD24)192,405
C2.11(C2×D24) = C2×D48central stem extension (φ=1)96C2.11(C2xD24)192,461
C2.12(C2×D24) = C2×C48⋊C2central stem extension (φ=1)96C2.12(C2xD24)192,462
C2.13(C2×D24) = D487C2central stem extension (φ=1)962C2.13(C2xD24)192,463
C2.14(C2×D24) = C2×Dic24central stem extension (φ=1)192C2.14(C2xD24)192,464
C2.15(C2×D24) = C16⋊D6central stem extension (φ=1)484+C2.15(C2xD24)192,467
C2.16(C2×D24) = C16.D6central stem extension (φ=1)964-C2.16(C2xD24)192,468
C2.17(C2×D24) = C2429D4central stem extension (φ=1)96C2.17(C2xD24)192,674

׿
×
𝔽