Copied to
clipboard

G = C12:4D8order 192 = 26·3

1st semidirect product of C12 and D8 acting via D8/C8=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C12:4D8, C8:4D12, C4:1D24, C24:22D4, C42.262D6, (C4xC8):8S3, C6.4(C2xD8), (C4xC24):13C2, (C2xD24):1C2, C3:1(C8:4D4), C2.6(C2xD24), C4:D12:1C2, C4.31(C2xD12), (C2xC4).81D12, (C2xC8).301D6, (C2xC12).378D4, C12.274(C2xD4), C6.4(C4:1D4), C2.6(C4:D12), (C2xD12).3C22, C22.91(C2xD12), (C2xC12).724C23, (C2xC24).374C22, (C4xC12).308C22, (C2xC6).107(C2xD4), (C2xC4).667(C22xS3), SmallGroup(192,254)

Series: Derived Chief Lower central Upper central

C1C2xC12 — C12:4D8
C1C3C6C12C2xC12C2xD12C4:D12 — C12:4D8
C3C6C2xC12 — C12:4D8
C1C22C42C4xC8

Generators and relations for C12:4D8
 G = < a,b,c | a12=b8=c2=1, ab=ba, cac=a-1, cbc=b-1 >

Subgroups: 728 in 162 conjugacy classes, 55 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, S3, C6, C6, C8, C2xC4, C2xC4, D4, C23, C12, D6, C2xC6, C42, C2xC8, D8, C2xD4, C24, D12, C2xC12, C2xC12, C22xS3, C4xC8, C4:1D4, C2xD8, D24, C4xC12, C2xC24, C2xD12, C2xD12, C8:4D4, C4xC24, C4:D12, C2xD24, C12:4D8
Quotients: C1, C2, C22, S3, D4, C23, D6, D8, C2xD4, D12, C22xS3, C4:1D4, C2xD8, D24, C2xD12, C8:4D4, C4:D12, C2xD24, C12:4D8

Smallest permutation representation of C12:4D8
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 63 76 15 46 95 36 51)(2 64 77 16 47 96 25 52)(3 65 78 17 48 85 26 53)(4 66 79 18 37 86 27 54)(5 67 80 19 38 87 28 55)(6 68 81 20 39 88 29 56)(7 69 82 21 40 89 30 57)(8 70 83 22 41 90 31 58)(9 71 84 23 42 91 32 59)(10 72 73 24 43 92 33 60)(11 61 74 13 44 93 34 49)(12 62 75 14 45 94 35 50)
(1 66)(2 65)(3 64)(4 63)(5 62)(6 61)(7 72)(8 71)(9 70)(10 69)(11 68)(12 67)(13 29)(14 28)(15 27)(16 26)(17 25)(18 36)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(37 95)(38 94)(39 93)(40 92)(41 91)(42 90)(43 89)(44 88)(45 87)(46 86)(47 85)(48 96)(49 81)(50 80)(51 79)(52 78)(53 77)(54 76)(55 75)(56 74)(57 73)(58 84)(59 83)(60 82)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,63,76,15,46,95,36,51)(2,64,77,16,47,96,25,52)(3,65,78,17,48,85,26,53)(4,66,79,18,37,86,27,54)(5,67,80,19,38,87,28,55)(6,68,81,20,39,88,29,56)(7,69,82,21,40,89,30,57)(8,70,83,22,41,90,31,58)(9,71,84,23,42,91,32,59)(10,72,73,24,43,92,33,60)(11,61,74,13,44,93,34,49)(12,62,75,14,45,94,35,50), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,72)(8,71)(9,70)(10,69)(11,68)(12,67)(13,29)(14,28)(15,27)(16,26)(17,25)(18,36)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(37,95)(38,94)(39,93)(40,92)(41,91)(42,90)(43,89)(44,88)(45,87)(46,86)(47,85)(48,96)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,84)(59,83)(60,82)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,63,76,15,46,95,36,51)(2,64,77,16,47,96,25,52)(3,65,78,17,48,85,26,53)(4,66,79,18,37,86,27,54)(5,67,80,19,38,87,28,55)(6,68,81,20,39,88,29,56)(7,69,82,21,40,89,30,57)(8,70,83,22,41,90,31,58)(9,71,84,23,42,91,32,59)(10,72,73,24,43,92,33,60)(11,61,74,13,44,93,34,49)(12,62,75,14,45,94,35,50), (1,66)(2,65)(3,64)(4,63)(5,62)(6,61)(7,72)(8,71)(9,70)(10,69)(11,68)(12,67)(13,29)(14,28)(15,27)(16,26)(17,25)(18,36)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(37,95)(38,94)(39,93)(40,92)(41,91)(42,90)(43,89)(44,88)(45,87)(46,86)(47,85)(48,96)(49,81)(50,80)(51,79)(52,78)(53,77)(54,76)(55,75)(56,74)(57,73)(58,84)(59,83)(60,82) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,63,76,15,46,95,36,51),(2,64,77,16,47,96,25,52),(3,65,78,17,48,85,26,53),(4,66,79,18,37,86,27,54),(5,67,80,19,38,87,28,55),(6,68,81,20,39,88,29,56),(7,69,82,21,40,89,30,57),(8,70,83,22,41,90,31,58),(9,71,84,23,42,91,32,59),(10,72,73,24,43,92,33,60),(11,61,74,13,44,93,34,49),(12,62,75,14,45,94,35,50)], [(1,66),(2,65),(3,64),(4,63),(5,62),(6,61),(7,72),(8,71),(9,70),(10,69),(11,68),(12,67),(13,29),(14,28),(15,27),(16,26),(17,25),(18,36),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(37,95),(38,94),(39,93),(40,92),(41,91),(42,90),(43,89),(44,88),(45,87),(46,86),(47,85),(48,96),(49,81),(50,80),(51,79),(52,78),(53,77),(54,76),(55,75),(56,74),(57,73),(58,84),(59,83),(60,82)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A···4F6A6B6C8A···8H12A···12L24A···24P
order1222222234···46668···812···1224···24
size11112424242422···22222···22···22···2

54 irreducible representations

dim1111222222222
type+++++++++++++
imageC1C2C2C2S3D4D4D6D6D8D12D12D24
kernelC12:4D8C4xC24C4:D12C2xD24C4xC8C24C2xC12C42C2xC8C12C8C2xC4C4
# reps11241421288416

Matrix representation of C12:4D8 in GL4(F73) generated by

596600
76600
0001
007272
,
23500
681800
00555
006850
,
506800
182300
005068
001823
G:=sub<GL(4,GF(73))| [59,7,0,0,66,66,0,0,0,0,0,72,0,0,1,72],[23,68,0,0,5,18,0,0,0,0,55,68,0,0,5,50],[50,18,0,0,68,23,0,0,0,0,50,18,0,0,68,23] >;

C12:4D8 in GAP, Magma, Sage, TeX

C_{12}\rtimes_4D_8
% in TeX

G:=Group("C12:4D8");
// GroupNames label

G:=SmallGroup(192,254);
// by ID

G=gap.SmallGroup(192,254);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,254,226,1123,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,a*b=b*a,c*a*c=a^-1,c*b*c=b^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<