Copied to
clipboard

G = C4×D24order 192 = 26·3

Direct product of C4 and D24

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4×D24, C125D8, C42.259D6, C31(C4×D8), (C4×C8)⋊7S3, C810(C4×S3), C6.2(C2×D8), C6.7(C4×D4), (C4×C24)⋊12C2, C2422(C2×C4), (C4×D12)⋊1C2, D128(C2×C4), C2.1(C2×D24), C241C428C2, C6.3(C4○D8), C2.10(C4×D12), (C2×C8).286D6, (C2×C4).61D12, (C2×D24).14C2, C2.2(C4○D24), (C2×C12).351D4, C2.D2443C2, C22.28(C2×D12), C12.217(C4○D4), C4.101(C4○D12), C12.102(C22×C4), (C2×C24).346C22, (C2×C12).721C23, (C4×C12).326C22, (C2×D12).188C22, C4⋊Dic3.263C22, C4.60(S3×C2×C4), (C2×C6).104(C2×D4), (C2×C4).664(C22×S3), SmallGroup(192,251)

Series: Derived Chief Lower central Upper central

C1C12 — C4×D24
C1C3C6C2×C6C2×C12C2×D12C2×D24 — C4×D24
C3C6C12 — C4×D24
C1C2×C4C42C4×C8

Generators and relations for C4×D24
 G = < a,b,c | a4=b24=c2=1, ab=ba, ac=ca, cbc=b-1 >

Subgroups: 456 in 134 conjugacy classes, 55 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, D8, C22×C4, C2×D4, C24, C24, C4×S3, D12, D12, C2×Dic3, C2×C12, C22×S3, C4×C8, D4⋊C4, C2.D8, C4×D4, C2×D8, D24, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, S3×C2×C4, C2×D12, C4×D8, C241C4, C2.D24, C4×C24, C4×D12, C2×D24, C4×D24
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, D8, C22×C4, C2×D4, C4○D4, C4×S3, D12, C22×S3, C4×D4, C2×D8, C4○D8, D24, S3×C2×C4, C2×D12, C4○D12, C4×D8, C4×D12, C2×D24, C4○D24, C4×D24

Smallest permutation representation of C4×D24
On 96 points
Generators in S96
(1 87 64 26)(2 88 65 27)(3 89 66 28)(4 90 67 29)(5 91 68 30)(6 92 69 31)(7 93 70 32)(8 94 71 33)(9 95 72 34)(10 96 49 35)(11 73 50 36)(12 74 51 37)(13 75 52 38)(14 76 53 39)(15 77 54 40)(16 78 55 41)(17 79 56 42)(18 80 57 43)(19 81 58 44)(20 82 59 45)(21 83 60 46)(22 84 61 47)(23 85 62 48)(24 86 63 25)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)
(1 54)(2 53)(3 52)(4 51)(5 50)(6 49)(7 72)(8 71)(9 70)(10 69)(11 68)(12 67)(13 66)(14 65)(15 64)(16 63)(17 62)(18 61)(19 60)(20 59)(21 58)(22 57)(23 56)(24 55)(25 78)(26 77)(27 76)(28 75)(29 74)(30 73)(31 96)(32 95)(33 94)(34 93)(35 92)(36 91)(37 90)(38 89)(39 88)(40 87)(41 86)(42 85)(43 84)(44 83)(45 82)(46 81)(47 80)(48 79)

G:=sub<Sym(96)| (1,87,64,26)(2,88,65,27)(3,89,66,28)(4,90,67,29)(5,91,68,30)(6,92,69,31)(7,93,70,32)(8,94,71,33)(9,95,72,34)(10,96,49,35)(11,73,50,36)(12,74,51,37)(13,75,52,38)(14,76,53,39)(15,77,54,40)(16,78,55,41)(17,79,56,42)(18,80,57,43)(19,81,58,44)(20,82,59,45)(21,83,60,46)(22,84,61,47)(23,85,62,48)(24,86,63,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,54)(2,53)(3,52)(4,51)(5,50)(6,49)(7,72)(8,71)(9,70)(10,69)(11,68)(12,67)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,60)(20,59)(21,58)(22,57)(23,56)(24,55)(25,78)(26,77)(27,76)(28,75)(29,74)(30,73)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,84)(44,83)(45,82)(46,81)(47,80)(48,79)>;

G:=Group( (1,87,64,26)(2,88,65,27)(3,89,66,28)(4,90,67,29)(5,91,68,30)(6,92,69,31)(7,93,70,32)(8,94,71,33)(9,95,72,34)(10,96,49,35)(11,73,50,36)(12,74,51,37)(13,75,52,38)(14,76,53,39)(15,77,54,40)(16,78,55,41)(17,79,56,42)(18,80,57,43)(19,81,58,44)(20,82,59,45)(21,83,60,46)(22,84,61,47)(23,85,62,48)(24,86,63,25), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96), (1,54)(2,53)(3,52)(4,51)(5,50)(6,49)(7,72)(8,71)(9,70)(10,69)(11,68)(12,67)(13,66)(14,65)(15,64)(16,63)(17,62)(18,61)(19,60)(20,59)(21,58)(22,57)(23,56)(24,55)(25,78)(26,77)(27,76)(28,75)(29,74)(30,73)(31,96)(32,95)(33,94)(34,93)(35,92)(36,91)(37,90)(38,89)(39,88)(40,87)(41,86)(42,85)(43,84)(44,83)(45,82)(46,81)(47,80)(48,79) );

G=PermutationGroup([[(1,87,64,26),(2,88,65,27),(3,89,66,28),(4,90,67,29),(5,91,68,30),(6,92,69,31),(7,93,70,32),(8,94,71,33),(9,95,72,34),(10,96,49,35),(11,73,50,36),(12,74,51,37),(13,75,52,38),(14,76,53,39),(15,77,54,40),(16,78,55,41),(17,79,56,42),(18,80,57,43),(19,81,58,44),(20,82,59,45),(21,83,60,46),(22,84,61,47),(23,85,62,48),(24,86,63,25)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)], [(1,54),(2,53),(3,52),(4,51),(5,50),(6,49),(7,72),(8,71),(9,70),(10,69),(11,68),(12,67),(13,66),(14,65),(15,64),(16,63),(17,62),(18,61),(19,60),(20,59),(21,58),(22,57),(23,56),(24,55),(25,78),(26,77),(27,76),(28,75),(29,74),(30,73),(31,96),(32,95),(33,94),(34,93),(35,92),(36,91),(37,90),(38,89),(39,88),(40,87),(41,86),(42,85),(43,84),(44,83),(45,82),(46,81),(47,80),(48,79)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A4B4C4D4E4F4G4H4I4J4K4L6A6B6C8A···8H12A···12L24A···24P
order1222222234444444444446668···812···1224···24
size111112121212211112222121212122222···22···22···2

60 irreducible representations

dim1111111222222222222
type+++++++++++++
imageC1C2C2C2C2C2C4S3D4D6D6D8C4○D4C4×S3D12C4○D8D24C4○D12C4○D24
kernelC4×D24C241C4C2.D24C4×C24C4×D12C2×D24D24C4×C8C2×C12C42C2×C8C12C12C8C2×C4C6C4C4C2
# reps1121218121242444848

Matrix representation of C4×D24 in GL3(𝔽73) generated by

4600
0460
0046
,
100
06850
02318
,
100
0147
06659
G:=sub<GL(3,GF(73))| [46,0,0,0,46,0,0,0,46],[1,0,0,0,68,23,0,50,18],[1,0,0,0,14,66,0,7,59] >;

C4×D24 in GAP, Magma, Sage, TeX

C_4\times D_{24}
% in TeX

G:=Group("C4xD24");
// GroupNames label

G:=SmallGroup(192,251);
// by ID

G=gap.SmallGroup(192,251);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,344,58,1684,102,6278]);
// Polycyclic

G:=Group<a,b,c|a^4=b^24=c^2=1,a*b=b*a,a*c=c*a,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽