Extensions 1→N→G→Q→1 with N=C2×Dic3 and Q=Q8

Direct product G=N×Q with N=C2×Dic3 and Q=Q8
dρLabelID
C2×Q8×Dic3192C2xQ8xDic3192,1370

Semidirect products G=N:Q with N=C2×Dic3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C2×Dic3)⋊1Q8 = (C2×C4)⋊Dic6φ: Q8/C2C22 ⊆ Out C2×Dic3192(C2xDic3):1Q8192,215
(C2×Dic3)⋊2Q8 = (C2×Dic3)⋊Q8φ: Q8/C2C22 ⊆ Out C2×Dic3192(C2xDic3):2Q8192,538
(C2×Dic3)⋊3Q8 = C22.52(S3×Q8)φ: Q8/C2C22 ⊆ Out C2×Dic3192(C2xDic3):3Q8192,789
(C2×Dic3)⋊4Q8 = C6.752- 1+4φ: Q8/C2C22 ⊆ Out C2×Dic396(C2xDic3):4Q8192,1182
(C2×Dic3)⋊5Q8 = (C2×C12)⋊Q8φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3):5Q8192,205
(C2×Dic3)⋊6Q8 = C4.(D6⋊C4)φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3):6Q8192,532
(C2×Dic3)⋊7Q8 = (C6×Q8)⋊7C4φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3):7Q8192,788
(C2×Dic3)⋊8Q8 = C2×C12⋊Q8φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3):8Q8192,1056
(C2×Dic3)⋊9Q8 = (Q8×Dic3)⋊C2φ: Q8/C4C2 ⊆ Out C2×Dic396(C2xDic3):9Q8192,1181
(C2×Dic3)⋊10Q8 = C2×Dic3⋊Q8φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3):10Q8192,1369
(C2×Dic3)⋊11Q8 = C2×Dic6⋊C4φ: trivial image192(C2xDic3):11Q8192,1055

Non-split extensions G=N.Q with N=C2×Dic3 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C2×Dic3).1Q8 = C6.(C4⋊Q8)φ: Q8/C2C22 ⊆ Out C2×Dic3192(C2xDic3).1Q8192,216
(C2×Dic3).2Q8 = (C2×Dic3).9D4φ: Q8/C2C22 ⊆ Out C2×Dic3192(C2xDic3).2Q8192,217
(C2×Dic3).3Q8 = (C2×C4).17D12φ: Q8/C2C22 ⊆ Out C2×Dic3192(C2xDic3).3Q8192,218
(C2×Dic3).4Q8 = M4(2).25D6φ: Q8/C2C22 ⊆ Out C2×Dic3484(C2xDic3).4Q8192,452
(C2×Dic3).5Q8 = (C2×C4).44D12φ: Q8/C2C22 ⊆ Out C2×Dic3192(C2xDic3).5Q8192,540
(C2×Dic3).6Q8 = (C2×C12).54D4φ: Q8/C2C22 ⊆ Out C2×Dic3192(C2xDic3).6Q8192,541
(C2×Dic3).7Q8 = (C2×Dic3).Q8φ: Q8/C2C22 ⊆ Out C2×Dic3192(C2xDic3).7Q8192,542
(C2×Dic3).8Q8 = (C2×C12).288D4φ: Q8/C2C22 ⊆ Out C2×Dic3192(C2xDic3).8Q8192,544
(C2×Dic3).9Q8 = C6.(C4×Q8)φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).9Q8192,206
(C2×Dic3).10Q8 = C3⋊(C428C4)φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).10Q8192,209
(C2×Dic3).11Q8 = C6.(C4×D4)φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).11Q8192,211
(C2×Dic3).12Q8 = C2.(C4×D12)φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).12Q8192,212
(C2×Dic3).13Q8 = S3×C8.C4φ: Q8/C4C2 ⊆ Out C2×Dic3484(C2xDic3).13Q8192,451
(C2×Dic3).14Q8 = C12⋊(C4⋊C4)φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).14Q8192,531
(C2×Dic3).15Q8 = (C4×Dic3)⋊8C4φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).15Q8192,534
(C2×Dic3).16Q8 = Dic3⋊(C4⋊C4)φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).16Q8192,535
(C2×Dic3).17Q8 = C6.67(C4×D4)φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).17Q8192,537
(C2×Dic3).18Q8 = C4⋊C45Dic3φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).18Q8192,539
(C2×Dic3).19Q8 = C4⋊C46Dic3φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).19Q8192,543
(C2×Dic3).20Q8 = C2×Dic3.Q8φ: Q8/C4C2 ⊆ Out C2×Dic3192(C2xDic3).20Q8192,1057
(C2×Dic3).21Q8 = Dic3⋊C42φ: trivial image192(C2xDic3).21Q8192,208
(C2×Dic3).22Q8 = Dic3×C4⋊C4φ: trivial image192(C2xDic3).22Q8192,533

׿
×
𝔽