Copied to
clipboard

G = S3×C8.C4order 192 = 26·3

Direct product of S3 and C8.C4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C8.C4, M4(2).24D6, (S3×C8).1C4, C8.31(C4×S3), C24.18(C2×C4), (C4×S3).34D4, (C2×C8).251D6, C4.210(S3×D4), C24.C46C2, D6.12(C4⋊C4), C12.369(C2×D4), C22.3(S3×Q8), (C22×S3).8Q8, Dic3.8(C4⋊C4), C12.52(C22×C4), (C2×C24).39C22, (C2×Dic3).13Q8, (S3×M4(2)).2C2, C12.53D411C2, (C2×C12).308C23, C4.Dic3.12C22, (C3×M4(2)).26C22, (S3×C2×C8).1C2, C4.82(S3×C2×C4), C6.16(C2×C4⋊C4), C2.17(S3×C4⋊C4), C31(C2×C8.C4), C3⋊C8.18(C2×C4), (C2×C6).1(C2×Q8), (C3×C8.C4)⋊2C2, (C4×S3).29(C2×C4), (C2×C3⋊C8).237C22, (S3×C2×C4).238C22, (C2×C4).411(C22×S3), SmallGroup(192,451)

Series: Derived Chief Lower central Upper central

C1C12 — S3×C8.C4
C1C3C6C12C2×C12S3×C2×C4S3×C2×C8 — S3×C8.C4
C3C6C12 — S3×C8.C4
C1C4C2×C4C8.C4

Generators and relations for S3×C8.C4
 G = < a,b,c,d | a3=b2=c8=1, d4=c4, bab=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 224 in 106 conjugacy classes, 53 normal (41 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C8, C8, C2×C4, C2×C4, C23, Dic3, C12, D6, D6, C2×C6, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C3⋊C8, C3⋊C8, C24, C24, C4×S3, C2×Dic3, C2×C12, C22×S3, C8.C4, C8.C4, C22×C8, C2×M4(2), S3×C8, S3×C8, C8⋊S3, C2×C3⋊C8, C4.Dic3, C2×C24, C3×M4(2), S3×C2×C4, C2×C8.C4, C24.C4, C12.53D4, C3×C8.C4, S3×C2×C8, S3×M4(2), S3×C8.C4
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, Q8, C23, D6, C4⋊C4, C22×C4, C2×D4, C2×Q8, C4×S3, C22×S3, C8.C4, C2×C4⋊C4, S3×C2×C4, S3×D4, S3×Q8, C2×C8.C4, S3×C4⋊C4, S3×C8.C4

Smallest permutation representation of S3×C8.C4
On 48 points
Generators in S48
(1 13 18)(2 14 19)(3 15 20)(4 16 21)(5 9 22)(6 10 23)(7 11 24)(8 12 17)(25 45 37)(26 46 38)(27 47 39)(28 48 40)(29 41 33)(30 42 34)(31 43 35)(32 44 36)
(1 5)(2 6)(3 7)(4 8)(9 18)(10 19)(11 20)(12 21)(13 22)(14 23)(15 24)(16 17)(25 29)(26 30)(27 31)(28 32)(33 45)(34 46)(35 47)(36 48)(37 41)(38 42)(39 43)(40 44)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 27 7 29 5 31 3 25)(2 26 8 28 6 30 4 32)(9 43 15 45 13 47 11 41)(10 42 16 44 14 46 12 48)(17 40 23 34 21 36 19 38)(18 39 24 33 22 35 20 37)

G:=sub<Sym(48)| (1,13,18)(2,14,19)(3,15,20)(4,16,21)(5,9,22)(6,10,23)(7,11,24)(8,12,17)(25,45,37)(26,46,38)(27,47,39)(28,48,40)(29,41,33)(30,42,34)(31,43,35)(32,44,36), (1,5)(2,6)(3,7)(4,8)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17)(25,29)(26,30)(27,31)(28,32)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,27,7,29,5,31,3,25)(2,26,8,28,6,30,4,32)(9,43,15,45,13,47,11,41)(10,42,16,44,14,46,12,48)(17,40,23,34,21,36,19,38)(18,39,24,33,22,35,20,37)>;

G:=Group( (1,13,18)(2,14,19)(3,15,20)(4,16,21)(5,9,22)(6,10,23)(7,11,24)(8,12,17)(25,45,37)(26,46,38)(27,47,39)(28,48,40)(29,41,33)(30,42,34)(31,43,35)(32,44,36), (1,5)(2,6)(3,7)(4,8)(9,18)(10,19)(11,20)(12,21)(13,22)(14,23)(15,24)(16,17)(25,29)(26,30)(27,31)(28,32)(33,45)(34,46)(35,47)(36,48)(37,41)(38,42)(39,43)(40,44), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,27,7,29,5,31,3,25)(2,26,8,28,6,30,4,32)(9,43,15,45,13,47,11,41)(10,42,16,44,14,46,12,48)(17,40,23,34,21,36,19,38)(18,39,24,33,22,35,20,37) );

G=PermutationGroup([[(1,13,18),(2,14,19),(3,15,20),(4,16,21),(5,9,22),(6,10,23),(7,11,24),(8,12,17),(25,45,37),(26,46,38),(27,47,39),(28,48,40),(29,41,33),(30,42,34),(31,43,35),(32,44,36)], [(1,5),(2,6),(3,7),(4,8),(9,18),(10,19),(11,20),(12,21),(13,22),(14,23),(15,24),(16,17),(25,29),(26,30),(27,31),(28,32),(33,45),(34,46),(35,47),(36,48),(37,41),(38,42),(39,43),(40,44)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,27,7,29,5,31,3,25),(2,26,8,28,6,30,4,32),(9,43,15,45,13,47,11,41),(10,42,16,44,14,46,12,48),(17,40,23,34,21,36,19,38),(18,39,24,33,22,35,20,37)]])

42 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F6A6B8A8B8C8D8E8F8G8H8I8J8K8L8M8N8O8P12A12B12C24A24B24C24D24E24F24G24H
order12222234444446688888888888888881212122424242424242424
size1123362112336242222444466661212121222444448888

42 irreducible representations

dim111111122222222444
type++++++++--+++-
imageC1C2C2C2C2C2C4S3D4Q8Q8D6D6C4×S3C8.C4S3×D4S3×Q8S3×C8.C4
kernelS3×C8.C4C24.C4C12.53D4C3×C8.C4S3×C2×C8S3×M4(2)S3×C8C8.C4C4×S3C2×Dic3C22×S3C2×C8M4(2)C8S3C4C22C1
# reps112112812111248114

Matrix representation of S3×C8.C4 in GL4(𝔽73) generated by

1000
0100
00072
00172
,
72000
07200
0001
0010
,
22000
01000
00720
00072
,
0100
27000
0010
0001
G:=sub<GL(4,GF(73))| [1,0,0,0,0,1,0,0,0,0,0,1,0,0,72,72],[72,0,0,0,0,72,0,0,0,0,0,1,0,0,1,0],[22,0,0,0,0,10,0,0,0,0,72,0,0,0,0,72],[0,27,0,0,1,0,0,0,0,0,1,0,0,0,0,1] >;

S3×C8.C4 in GAP, Magma, Sage, TeX

S_3\times C_8.C_4
% in TeX

G:=Group("S3xC8.C4");
// GroupNames label

G:=SmallGroup(192,451);
// by ID

G=gap.SmallGroup(192,451);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,120,219,58,136,438,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^2=c^8=1,d^4=c^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽