Extensions 1→N→G→Q→1 with N=D46D6 and Q=C2

Direct product G=N×Q with N=D46D6 and Q=C2
dρLabelID
C2×D46D648C2xD4:6D6192,1516

Semidirect products G=N:Q with N=D46D6 and Q=C2
extensionφ:Q→Out NdρLabelID
D46D61C2 = C23⋊D12φ: C2/C1C2 ⊆ Out D46D6248+D4:6D6:1C2192,300
D46D62C2 = D121D4φ: C2/C1C2 ⊆ Out D46D6248+D4:6D6:2C2192,306
D46D63C2 = C246D6φ: C2/C1C2 ⊆ Out D46D6244D4:6D6:3C2192,591
D46D64C2 = C428D6φ: C2/C1C2 ⊆ Out D46D6244D4:6D6:4C2192,636
D46D65C2 = D813D6φ: C2/C1C2 ⊆ Out D46D6484D4:6D6:5C2192,1316
D46D66C2 = SD1613D6φ: C2/C1C2 ⊆ Out D46D6484D4:6D6:6C2192,1321
D46D67C2 = D85D6φ: C2/C1C2 ⊆ Out D46D6488+D4:6D6:7C2192,1333
D46D68C2 = D86D6φ: C2/C1C2 ⊆ Out D46D6488-D4:6D6:8C2192,1334
D46D69C2 = S3×2+ 1+4φ: C2/C1C2 ⊆ Out D46D6248+D4:6D6:9C2192,1524
D46D610C2 = D6.C24φ: C2/C1C2 ⊆ Out D46D6488-D4:6D6:10C2192,1525
D46D611C2 = C6.C25φ: trivial image484D4:6D6:11C2192,1523

Non-split extensions G=N.Q with N=D46D6 and Q=C2
extensionφ:Q→Out NdρLabelID
D46D6.1C2 = C23.5D12φ: C2/C1C2 ⊆ Out D46D6488-D4:6D6.1C2192,301
D46D6.2C2 = M4(2)⋊D6φ: C2/C1C2 ⊆ Out D46D6488-D4:6D6.2C2192,305
D46D6.3C2 = C22⋊C4⋊D6φ: C2/C1C2 ⊆ Out D46D6484D4:6D6.3C2192,612
D46D6.4C2 = C427D6φ: C2/C1C2 ⊆ Out D46D6484D4:6D6.4C2192,620

׿
×
𝔽