direct product, metabelian, supersoluble, monomial, rational, 2-hyperelementary
Aliases: S3×2+ 1+4, C6.15C25, D12⋊13C23, C12.50C24, D6.14C24, Dic6⋊12C23, Dic3.10C24, C4○D4⋊13D6, (C2×D4)⋊31D6, D4○D12⋊11C2, D4⋊6D6⋊9C2, (C4×S3)⋊3C23, (C2×C12)⋊2C23, C3⋊D4⋊6C23, (C2×C6).6C24, D4⋊10(C22×S3), (C6×D4)⋊25C22, (C3×D4)⋊11C23, (S3×D4)⋊17C22, C4.47(S3×C23), C2.16(S3×C24), C23⋊3(C22×S3), (C22×C6)⋊2C23, Q8⋊10(C22×S3), (C3×Q8)⋊10C23, (S3×Q8)⋊20C22, C3⋊3(C2×2+ 1+4), C4○D12⋊12C22, (C2×D12)⋊40C22, (C22×S3)⋊6C23, (C2×Dic3)⋊6C23, C22.3(S3×C23), D4⋊2S3⋊15C22, (S3×C23)⋊19C22, Q8⋊3S3⋊15C22, (C3×2+ 1+4)⋊4C2, (C2×S3×D4)⋊29C2, (S3×C4○D4)⋊7C2, (S3×C2×C4)⋊36C22, (C2×C4)⋊2(C22×S3), (C3×C4○D4)⋊10C22, (C2×C3⋊D4)⋊32C22, SmallGroup(192,1524)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for S3×2+ 1+4
G = < a,b,c,d,e,f | a3=b2=c4=d2=f2=1, e2=c2, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, dcd=c-1, ce=ec, cf=fc, de=ed, df=fd, fef=c2e >
Subgroups: 2152 in 898 conjugacy classes, 445 normal (8 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, S3, C6, C6, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, C23, Dic3, C12, D6, D6, D6, C2×C6, C2×C6, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C4○D4, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Q8, C22×S3, C22×S3, C22×C6, C22×D4, C2×C4○D4, 2+ 1+4, 2+ 1+4, S3×C2×C4, C2×D12, C4○D12, S3×D4, D4⋊2S3, S3×Q8, Q8⋊3S3, C2×C3⋊D4, C6×D4, C3×C4○D4, S3×C23, C2×2+ 1+4, C2×S3×D4, D4⋊6D6, S3×C4○D4, D4○D12, C3×2+ 1+4, S3×2+ 1+4
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2+ 1+4, C25, S3×C23, C2×2+ 1+4, S3×C24, S3×2+ 1+4
(1 17 10)(2 18 11)(3 19 12)(4 20 9)(5 21 16)(6 22 13)(7 23 14)(8 24 15)
(1 3)(2 4)(5 7)(6 8)(9 18)(10 19)(11 20)(12 17)(13 24)(14 21)(15 22)(16 23)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(2 4)(6 8)(9 11)(13 15)(18 20)(22 24)
(1 5 3 7)(2 6 4 8)(9 15 11 13)(10 16 12 14)(17 21 19 23)(18 22 20 24)
(1 7)(2 8)(3 5)(4 6)(9 13)(10 14)(11 15)(12 16)(17 23)(18 24)(19 21)(20 22)
G:=sub<Sym(24)| (1,17,10)(2,18,11)(3,19,12)(4,20,9)(5,21,16)(6,22,13)(7,23,14)(8,24,15), (1,3)(2,4)(5,7)(6,8)(9,18)(10,19)(11,20)(12,17)(13,24)(14,21)(15,22)(16,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(6,8)(9,11)(13,15)(18,20)(22,24), (1,5,3,7)(2,6,4,8)(9,15,11,13)(10,16,12,14)(17,21,19,23)(18,22,20,24), (1,7)(2,8)(3,5)(4,6)(9,13)(10,14)(11,15)(12,16)(17,23)(18,24)(19,21)(20,22)>;
G:=Group( (1,17,10)(2,18,11)(3,19,12)(4,20,9)(5,21,16)(6,22,13)(7,23,14)(8,24,15), (1,3)(2,4)(5,7)(6,8)(9,18)(10,19)(11,20)(12,17)(13,24)(14,21)(15,22)(16,23), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (2,4)(6,8)(9,11)(13,15)(18,20)(22,24), (1,5,3,7)(2,6,4,8)(9,15,11,13)(10,16,12,14)(17,21,19,23)(18,22,20,24), (1,7)(2,8)(3,5)(4,6)(9,13)(10,14)(11,15)(12,16)(17,23)(18,24)(19,21)(20,22) );
G=PermutationGroup([[(1,17,10),(2,18,11),(3,19,12),(4,20,9),(5,21,16),(6,22,13),(7,23,14),(8,24,15)], [(1,3),(2,4),(5,7),(6,8),(9,18),(10,19),(11,20),(12,17),(13,24),(14,21),(15,22),(16,23)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(2,4),(6,8),(9,11),(13,15),(18,20),(22,24)], [(1,5,3,7),(2,6,4,8),(9,15,11,13),(10,16,12,14),(17,21,19,23),(18,22,20,24)], [(1,7),(2,8),(3,5),(4,6),(9,13),(10,14),(11,15),(12,16),(17,23),(18,24),(19,21),(20,22)]])
G:=TransitiveGroup(24,335);
51 conjugacy classes
class | 1 | 2A | 2B | ··· | 2J | 2K | 2L | 2M | ··· | 2U | 3 | 4A | ··· | 4F | 4G | ··· | 4L | 6A | 6B | ··· | 6J | 12A | ··· | 12F |
order | 1 | 2 | 2 | ··· | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 2 | ··· | 2 | 3 | 3 | 6 | ··· | 6 | 2 | 2 | ··· | 2 | 6 | ··· | 6 | 2 | 4 | ··· | 4 | 4 | ··· | 4 |
51 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + |
image | C1 | C2 | C2 | C2 | C2 | C2 | S3 | D6 | D6 | 2+ 1+4 | S3×2+ 1+4 |
kernel | S3×2+ 1+4 | C2×S3×D4 | D4⋊6D6 | S3×C4○D4 | D4○D12 | C3×2+ 1+4 | 2+ 1+4 | C2×D4 | C4○D4 | S3 | C1 |
# reps | 1 | 9 | 9 | 6 | 6 | 1 | 1 | 9 | 6 | 2 | 1 |
Matrix representation of S3×2+ 1+4 ►in GL6(ℤ)
-1 | -1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | -1 | 2 | 0 | 0 |
0 | 0 | -1 | 1 | 0 | 0 |
0 | 0 | 0 | -1 | 0 | -1 |
0 | 0 | 1 | -1 | 1 | 0 |
-1 | 0 | 0 | 0 | 0 | 0 |
0 | -1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | -1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | -1 | 0 | 0 | -1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 2 | 0 |
0 | 0 | 0 | 0 | 1 | -1 |
0 | 0 | -1 | 0 | -1 | 0 |
0 | 0 | -1 | 1 | -1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | -1 | 0 | -1 | 0 |
0 | 0 | -1 | 0 | 0 | -1 |
G:=sub<GL(6,Integers())| [-1,1,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1,-1,0,1,0,0,2,1,-1,-1,0,0,0,0,0,1,0,0,0,0,-1,0],[-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,1,1,0,-1,0,0,0,-1,0,0,0,0,0,0,1,0,0,0,0,0,0,-1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,-1,0,0,0,0,0,1,0,0,2,1,-1,-1,0,0,0,-1,0,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,-1,-1,0,0,0,1,0,0,0,0,0,0,-1,0,0,0,0,0,0,-1] >;
S3×2+ 1+4 in GAP, Magma, Sage, TeX
S_3\times 2_+^{1+4}
% in TeX
G:=Group("S3xES+(2,2)");
// GroupNames label
G:=SmallGroup(192,1524);
// by ID
G=gap.SmallGroup(192,1524);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,297,851,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^2=c^4=d^2=f^2=1,e^2=c^2,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,d*c*d=c^-1,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f=c^2*e>;
// generators/relations