Copied to
clipboard

G = C2×D46D6order 192 = 26·3

Direct product of C2 and D46D6

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C2×D46D6, C2413D6, C6.7C25, D129C23, D6.3C24, C12.42C24, Dic69C23, C612+ 1+4, Dic3.3C24, (C2×D4)⋊46D6, (C4×S3)⋊1C23, (C2×C12)⋊5C23, D47(C22×S3), (C3×D4)⋊8C23, (C22×C4)⋊35D6, C3⋊D43C23, C2.8(S3×C24), (S3×D4)⋊11C22, (C22×D4)⋊16S3, (C6×D4)⋊51C22, C4.42(S3×C23), C235(C22×S3), (C22×C6)⋊7C23, C31(C2×2+ 1+4), C4○D1222C22, (C2×D12)⋊61C22, (C2×C6).327C24, (C22×S3)⋊4C23, (C23×C6)⋊16C22, (C2×Dic3)⋊5C23, C22.8(S3×C23), D42S312C22, (S3×C23)⋊17C22, (C22×C12)⋊26C22, (C2×Dic6)⋊72C22, (C22×Dic3)⋊38C22, (D4×C2×C6)⋊11C2, (C2×S3×D4)⋊27C2, (S3×C2×C4)⋊33C22, (C2×C4)⋊5(C22×S3), (C2×C4○D12)⋊34C2, (C2×D42S3)⋊29C2, (C22×C3⋊D4)⋊21C2, (C2×C3⋊D4)⋊52C22, SmallGroup(192,1516)

Series: Derived Chief Lower central Upper central

C1C6 — C2×D46D6
C1C3C6D6C22×S3S3×C23C2×S3×D4 — C2×D46D6
C3C6 — C2×D46D6
C1C22C22×D4

Generators and relations for C2×D46D6
 G = < a,b,c,d,e | a2=b4=c2=d6=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=dbd-1=b-1, be=eb, dcd-1=ece=b2c, ede=d-1 >

Subgroups: 2056 in 898 conjugacy classes, 447 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, S3, C6, C6, C6, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C23, Dic3, C12, D6, D6, C2×C6, C2×C6, C2×C6, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, C24, C24, Dic6, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22×C6, C22×C6, C22×D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×Dic6, S3×C2×C4, C2×D12, C4○D12, S3×D4, D42S3, C22×Dic3, C2×C3⋊D4, C22×C12, C6×D4, S3×C23, C23×C6, C2×2+ 1+4, C2×C4○D12, C2×S3×D4, C2×D42S3, D46D6, C22×C3⋊D4, D4×C2×C6, C2×D46D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2+ 1+4, C25, S3×C23, C2×2+ 1+4, D46D6, S3×C24, C2×D46D6

Smallest permutation representation of C2×D46D6
On 48 points
Generators in S48
(1 34)(2 35)(3 36)(4 31)(5 32)(6 33)(7 39)(8 40)(9 41)(10 42)(11 37)(12 38)(13 27)(14 28)(15 29)(16 30)(17 25)(18 26)(19 43)(20 44)(21 45)(22 46)(23 47)(24 48)
(1 31 23 44)(2 45 24 32)(3 33 19 46)(4 47 20 34)(5 35 21 48)(6 43 22 36)(7 18 29 42)(8 37 30 13)(9 14 25 38)(10 39 26 15)(11 16 27 40)(12 41 28 17)
(1 38)(2 15)(3 40)(4 17)(5 42)(6 13)(7 48)(8 36)(9 44)(10 32)(11 46)(12 34)(14 23)(16 19)(18 21)(20 41)(22 37)(24 39)(25 31)(26 45)(27 33)(28 47)(29 35)(30 43)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 36)(2 35)(3 34)(4 33)(5 32)(6 31)(7 15)(8 14)(9 13)(10 18)(11 17)(12 16)(19 47)(20 46)(21 45)(22 44)(23 43)(24 48)(25 37)(26 42)(27 41)(28 40)(29 39)(30 38)

G:=sub<Sym(48)| (1,34)(2,35)(3,36)(4,31)(5,32)(6,33)(7,39)(8,40)(9,41)(10,42)(11,37)(12,38)(13,27)(14,28)(15,29)(16,30)(17,25)(18,26)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,31,23,44)(2,45,24,32)(3,33,19,46)(4,47,20,34)(5,35,21,48)(6,43,22,36)(7,18,29,42)(8,37,30,13)(9,14,25,38)(10,39,26,15)(11,16,27,40)(12,41,28,17), (1,38)(2,15)(3,40)(4,17)(5,42)(6,13)(7,48)(8,36)(9,44)(10,32)(11,46)(12,34)(14,23)(16,19)(18,21)(20,41)(22,37)(24,39)(25,31)(26,45)(27,33)(28,47)(29,35)(30,43), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,15)(8,14)(9,13)(10,18)(11,17)(12,16)(19,47)(20,46)(21,45)(22,44)(23,43)(24,48)(25,37)(26,42)(27,41)(28,40)(29,39)(30,38)>;

G:=Group( (1,34)(2,35)(3,36)(4,31)(5,32)(6,33)(7,39)(8,40)(9,41)(10,42)(11,37)(12,38)(13,27)(14,28)(15,29)(16,30)(17,25)(18,26)(19,43)(20,44)(21,45)(22,46)(23,47)(24,48), (1,31,23,44)(2,45,24,32)(3,33,19,46)(4,47,20,34)(5,35,21,48)(6,43,22,36)(7,18,29,42)(8,37,30,13)(9,14,25,38)(10,39,26,15)(11,16,27,40)(12,41,28,17), (1,38)(2,15)(3,40)(4,17)(5,42)(6,13)(7,48)(8,36)(9,44)(10,32)(11,46)(12,34)(14,23)(16,19)(18,21)(20,41)(22,37)(24,39)(25,31)(26,45)(27,33)(28,47)(29,35)(30,43), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,36)(2,35)(3,34)(4,33)(5,32)(6,31)(7,15)(8,14)(9,13)(10,18)(11,17)(12,16)(19,47)(20,46)(21,45)(22,44)(23,43)(24,48)(25,37)(26,42)(27,41)(28,40)(29,39)(30,38) );

G=PermutationGroup([[(1,34),(2,35),(3,36),(4,31),(5,32),(6,33),(7,39),(8,40),(9,41),(10,42),(11,37),(12,38),(13,27),(14,28),(15,29),(16,30),(17,25),(18,26),(19,43),(20,44),(21,45),(22,46),(23,47),(24,48)], [(1,31,23,44),(2,45,24,32),(3,33,19,46),(4,47,20,34),(5,35,21,48),(6,43,22,36),(7,18,29,42),(8,37,30,13),(9,14,25,38),(10,39,26,15),(11,16,27,40),(12,41,28,17)], [(1,38),(2,15),(3,40),(4,17),(5,42),(6,13),(7,48),(8,36),(9,44),(10,32),(11,46),(12,34),(14,23),(16,19),(18,21),(20,41),(22,37),(24,39),(25,31),(26,45),(27,33),(28,47),(29,35),(30,43)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,36),(2,35),(3,34),(4,33),(5,32),(6,31),(7,15),(8,14),(9,13),(10,18),(11,17),(12,16),(19,47),(20,46),(21,45),(22,44),(23,43),(24,48),(25,37),(26,42),(27,41),(28,40),(29,39),(30,38)]])

54 conjugacy classes

class 1 2A2B2C2D···2M2N···2U 3 4A4B4C4D4E···4L6A···6G6H···6O12A12B12C12D
order12222···22···2344444···46···66···612121212
size11112···26···6222226···62···24···44444

54 irreducible representations

dim1111111222244
type++++++++++++
imageC1C2C2C2C2C2C2S3D6D6D62+ 1+4D46D6
kernelC2×D46D6C2×C4○D12C2×S3×D4C2×D42S3D46D6C22×C3⋊D4D4×C2×C6C22×D4C22×C4C2×D4C24C6C2
# reps124416411112224

Matrix representation of C2×D46D6 in GL6(𝔽13)

1200000
0120000
001000
000100
000010
000001
,
1200000
0120000
0012020
0001202
0012010
0001201
,
100000
010000
002400
0091100
0024119
0091142
,
1120000
100000
0001011
00121222
0000012
000011
,
1200000
1210000
000100
001000
000001
000010

G:=sub<GL(6,GF(13))| [12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,12,0,0,0,0,12,0,12,0,0,2,0,1,0,0,0,0,2,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,2,9,2,9,0,0,4,11,4,11,0,0,0,0,11,4,0,0,0,0,9,2],[1,1,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,1,12,0,0,0,0,0,2,0,1,0,0,11,2,12,1],[12,12,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

C2×D46D6 in GAP, Magma, Sage, TeX

C_2\times D_4\rtimes_6D_6
% in TeX

G:=Group("C2xD4:6D6");
// GroupNames label

G:=SmallGroup(192,1516);
// by ID

G=gap.SmallGroup(192,1516);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,297,1684,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^4=c^2=d^6=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=d*b*d^-1=b^-1,b*e=e*b,d*c*d^-1=e*c*e=b^2*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽