Extensions 1→N→G→Q→1 with N=C2 and Q=D12.C4

Direct product G=N×Q with N=C2 and Q=D12.C4
dρLabelID
C2×D12.C496C2xD12.C4192,1303


Non-split extensions G=N.Q with N=C2 and Q=D12.C4
extensionφ:Q→Aut NdρLabelID
C2.1(D12.C4) = D6.4C42central extension (φ=1)96C2.1(D12.C4)192,267
C2.2(D12.C4) = C3⋊D4⋊C8central extension (φ=1)96C2.2(D12.C4)192,284
C2.3(D12.C4) = Dic6⋊C8central extension (φ=1)192C2.3(D12.C4)192,389
C2.4(D12.C4) = D12⋊C8central extension (φ=1)96C2.4(D12.C4)192,393
C2.5(D12.C4) = C12.7C42central extension (φ=1)96C2.5(D12.C4)192,681
C2.6(D12.C4) = C24⋊Q8central stem extension (φ=1)192C2.6(D12.C4)192,260
C2.7(D12.C4) = C89D12central stem extension (φ=1)96C2.7(D12.C4)192,265
C2.8(D12.C4) = C42.185D6central stem extension (φ=1)96C2.8(D12.C4)192,268
C2.9(D12.C4) = C24⋊C4⋊C2central stem extension (φ=1)96C2.9(D12.C4)192,279
C2.10(D12.C4) = D6⋊C8⋊C2central stem extension (φ=1)96C2.10(D12.C4)192,286
C2.11(D12.C4) = C3⋊C826D4central stem extension (φ=1)96C2.11(D12.C4)192,289
C2.12(D12.C4) = C42.198D6central stem extension (φ=1)192C2.12(D12.C4)192,390
C2.13(D12.C4) = C122M4(2)central stem extension (φ=1)96C2.13(D12.C4)192,397
C2.14(D12.C4) = C42.30D6central stem extension (φ=1)96C2.14(D12.C4)192,398
C2.15(D12.C4) = C42.31D6central stem extension (φ=1)96C2.15(D12.C4)192,399
C2.16(D12.C4) = C12.88(C2×Q8)central stem extension (φ=1)96C2.16(D12.C4)192,678
C2.17(D12.C4) = C24⋊D4central stem extension (φ=1)96C2.17(D12.C4)192,686
C2.18(D12.C4) = C2421D4central stem extension (φ=1)96C2.18(D12.C4)192,687
C2.19(D12.C4) = D6⋊C840C2central stem extension (φ=1)96C2.19(D12.C4)192,688

׿
×
𝔽