metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C12⋊2M4(2), C42.204D6, C3⋊C8⋊17D4, C4⋊C8⋊14S3, D6⋊C8⋊29C2, C3⋊3(C8⋊6D4), C6.48(C4×D4), C4⋊1(C8⋊S3), D6⋊C4.12C4, (C4×D12).9C2, (C2×C8).183D6, C4.208(S3×D4), (C2×D12).13C4, C6.29(C8○D4), C12.367(C2×D4), C4⋊Dic3.19C4, C6.9(C2×M4(2)), (C4×C12).64C22, C12.336(C4○D4), C2.8(Dic3⋊5D4), (C2×C12).835C23, C2.13(D12.C4), (C2×C24).257C22, C4.56(Q8⋊3S3), (C4×C3⋊C8)⋊5C2, (C3×C4⋊C8)⋊24C2, (C2×C4).73(C4×S3), (C2×C8⋊S3)⋊22C2, C2.14(C2×C8⋊S3), C22.113(S3×C2×C4), (C2×C12).159(C2×C4), (C2×C3⋊C8).307C22, (S3×C2×C4).181C22, (C2×C6).90(C22×C4), (C22×S3).16(C2×C4), (C2×C4).777(C22×S3), (C2×Dic3).23(C2×C4), SmallGroup(192,397)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C12⋊2M4(2)
G = < a,b,c | a12=b8=c2=1, bab-1=a5, cac=a-1, cbc=b5 >
Subgroups: 312 in 122 conjugacy classes, 53 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C2×D4, C3⋊C8, C3⋊C8, C24, C4×S3, D12, C2×Dic3, C2×C12, C22×S3, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C2×M4(2), C8⋊S3, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, S3×C2×C4, C2×D12, C8⋊6D4, C4×C3⋊C8, D6⋊C8, C3×C4⋊C8, C4×D12, C2×C8⋊S3, C12⋊2M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, M4(2), C22×C4, C2×D4, C4○D4, C4×S3, C22×S3, C4×D4, C2×M4(2), C8○D4, C8⋊S3, S3×C2×C4, S3×D4, Q8⋊3S3, C8⋊6D4, Dic3⋊5D4, C2×C8⋊S3, D12.C4, C12⋊2M4(2)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 60 30 69 75 13 94 45)(2 53 31 62 76 18 95 38)(3 58 32 67 77 23 96 43)(4 51 33 72 78 16 85 48)(5 56 34 65 79 21 86 41)(6 49 35 70 80 14 87 46)(7 54 36 63 81 19 88 39)(8 59 25 68 82 24 89 44)(9 52 26 61 83 17 90 37)(10 57 27 66 84 22 91 42)(11 50 28 71 73 15 92 47)(12 55 29 64 74 20 93 40)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 60)(14 59)(15 58)(16 57)(17 56)(18 55)(19 54)(20 53)(21 52)(22 51)(23 50)(24 49)(25 35)(26 34)(27 33)(28 32)(29 31)(37 65)(38 64)(39 63)(40 62)(41 61)(42 72)(43 71)(44 70)(45 69)(46 68)(47 67)(48 66)(73 77)(74 76)(78 84)(79 83)(80 82)(85 91)(86 90)(87 89)(92 96)(93 95)
G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,60,30,69,75,13,94,45)(2,53,31,62,76,18,95,38)(3,58,32,67,77,23,96,43)(4,51,33,72,78,16,85,48)(5,56,34,65,79,21,86,41)(6,49,35,70,80,14,87,46)(7,54,36,63,81,19,88,39)(8,59,25,68,82,24,89,44)(9,52,26,61,83,17,90,37)(10,57,27,66,84,22,91,42)(11,50,28,71,73,15,92,47)(12,55,29,64,74,20,93,40), (2,12)(3,11)(4,10)(5,9)(6,8)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,35)(26,34)(27,33)(28,32)(29,31)(37,65)(38,64)(39,63)(40,62)(41,61)(42,72)(43,71)(44,70)(45,69)(46,68)(47,67)(48,66)(73,77)(74,76)(78,84)(79,83)(80,82)(85,91)(86,90)(87,89)(92,96)(93,95)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,60,30,69,75,13,94,45)(2,53,31,62,76,18,95,38)(3,58,32,67,77,23,96,43)(4,51,33,72,78,16,85,48)(5,56,34,65,79,21,86,41)(6,49,35,70,80,14,87,46)(7,54,36,63,81,19,88,39)(8,59,25,68,82,24,89,44)(9,52,26,61,83,17,90,37)(10,57,27,66,84,22,91,42)(11,50,28,71,73,15,92,47)(12,55,29,64,74,20,93,40), (2,12)(3,11)(4,10)(5,9)(6,8)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,35)(26,34)(27,33)(28,32)(29,31)(37,65)(38,64)(39,63)(40,62)(41,61)(42,72)(43,71)(44,70)(45,69)(46,68)(47,67)(48,66)(73,77)(74,76)(78,84)(79,83)(80,82)(85,91)(86,90)(87,89)(92,96)(93,95) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,60,30,69,75,13,94,45),(2,53,31,62,76,18,95,38),(3,58,32,67,77,23,96,43),(4,51,33,72,78,16,85,48),(5,56,34,65,79,21,86,41),(6,49,35,70,80,14,87,46),(7,54,36,63,81,19,88,39),(8,59,25,68,82,24,89,44),(9,52,26,61,83,17,90,37),(10,57,27,66,84,22,91,42),(11,50,28,71,73,15,92,47),(12,55,29,64,74,20,93,40)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,60),(14,59),(15,58),(16,57),(17,56),(18,55),(19,54),(20,53),(21,52),(22,51),(23,50),(24,49),(25,35),(26,34),(27,33),(28,32),(29,31),(37,65),(38,64),(39,63),(40,62),(41,61),(42,72),(43,71),(44,70),(45,69),(46,68),(47,67),(48,66),(73,77),(74,76),(78,84),(79,83),(80,82),(85,91),(86,90),(87,89),(92,96),(93,95)]])
48 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 8E | ··· | 8L | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 24A | ··· | 24H |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 8 | ··· | 8 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 12 | 12 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 12 | 12 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
48 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | |||||||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D4 | D6 | D6 | M4(2) | C4○D4 | C4×S3 | C8○D4 | C8⋊S3 | S3×D4 | Q8⋊3S3 | D12.C4 |
kernel | C12⋊2M4(2) | C4×C3⋊C8 | D6⋊C8 | C3×C4⋊C8 | C4×D12 | C2×C8⋊S3 | C4⋊Dic3 | D6⋊C4 | C2×D12 | C4⋊C8 | C3⋊C8 | C42 | C2×C8 | C12 | C12 | C2×C4 | C6 | C4 | C4 | C4 | C2 |
# reps | 1 | 1 | 2 | 1 | 1 | 2 | 2 | 4 | 2 | 1 | 2 | 1 | 2 | 4 | 2 | 4 | 4 | 8 | 1 | 1 | 2 |
Matrix representation of C12⋊2M4(2) ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 71 |
0 | 0 | 0 | 0 | 0 | 46 |
49 | 3 | 0 | 0 | 0 | 0 |
18 | 24 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 0 |
0 | 0 | 0 | 0 | 0 | 27 |
1 | 0 | 0 | 0 | 0 | 0 |
16 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 72 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 27 | 72 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,1,0,0,0,0,0,0,27,0,0,0,0,0,71,46],[49,18,0,0,0,0,3,24,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,27,0,0,0,0,0,0,27],[1,16,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,27,0,0,0,0,0,72] >;
C12⋊2M4(2) in GAP, Magma, Sage, TeX
C_{12}\rtimes_2M_4(2)
% in TeX
G:=Group("C12:2M4(2)");
// GroupNames label
G:=SmallGroup(192,397);
// by ID
G=gap.SmallGroup(192,397);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,758,219,58,136,6278]);
// Polycyclic
G:=Group<a,b,c|a^12=b^8=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^5>;
// generators/relations