Copied to
clipboard

G = C122M4(2)  order 192 = 26·3

2nd semidirect product of C12 and M4(2) acting via M4(2)/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C122M4(2), C42.204D6, C3⋊C817D4, C4⋊C814S3, D6⋊C829C2, C33(C86D4), C6.48(C4×D4), C41(C8⋊S3), D6⋊C4.12C4, (C4×D12).9C2, (C2×C8).183D6, C4.208(S3×D4), (C2×D12).13C4, C6.29(C8○D4), C12.367(C2×D4), C4⋊Dic3.19C4, C6.9(C2×M4(2)), (C4×C12).64C22, C12.336(C4○D4), C2.8(Dic35D4), (C2×C12).835C23, C2.13(D12.C4), (C2×C24).257C22, C4.56(Q83S3), (C4×C3⋊C8)⋊5C2, (C3×C4⋊C8)⋊24C2, (C2×C4).73(C4×S3), (C2×C8⋊S3)⋊22C2, C2.14(C2×C8⋊S3), C22.113(S3×C2×C4), (C2×C12).159(C2×C4), (C2×C3⋊C8).307C22, (S3×C2×C4).181C22, (C2×C6).90(C22×C4), (C22×S3).16(C2×C4), (C2×C4).777(C22×S3), (C2×Dic3).23(C2×C4), SmallGroup(192,397)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C122M4(2)
C1C3C6C12C2×C12S3×C2×C4C4×D12 — C122M4(2)
C3C2×C6 — C122M4(2)
C1C2×C4C4⋊C8

Generators and relations for C122M4(2)
 G = < a,b,c | a12=b8=c2=1, bab-1=a5, cac=a-1, cbc=b5 >

Subgroups: 312 in 122 conjugacy classes, 53 normal (31 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C2×D4, C3⋊C8, C3⋊C8, C24, C4×S3, D12, C2×Dic3, C2×C12, C22×S3, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C2×M4(2), C8⋊S3, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, S3×C2×C4, C2×D12, C86D4, C4×C3⋊C8, D6⋊C8, C3×C4⋊C8, C4×D12, C2×C8⋊S3, C122M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, M4(2), C22×C4, C2×D4, C4○D4, C4×S3, C22×S3, C4×D4, C2×M4(2), C8○D4, C8⋊S3, S3×C2×C4, S3×D4, Q83S3, C86D4, Dic35D4, C2×C8⋊S3, D12.C4, C122M4(2)

Smallest permutation representation of C122M4(2)
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 60 30 69 75 13 94 45)(2 53 31 62 76 18 95 38)(3 58 32 67 77 23 96 43)(4 51 33 72 78 16 85 48)(5 56 34 65 79 21 86 41)(6 49 35 70 80 14 87 46)(7 54 36 63 81 19 88 39)(8 59 25 68 82 24 89 44)(9 52 26 61 83 17 90 37)(10 57 27 66 84 22 91 42)(11 50 28 71 73 15 92 47)(12 55 29 64 74 20 93 40)
(2 12)(3 11)(4 10)(5 9)(6 8)(13 60)(14 59)(15 58)(16 57)(17 56)(18 55)(19 54)(20 53)(21 52)(22 51)(23 50)(24 49)(25 35)(26 34)(27 33)(28 32)(29 31)(37 65)(38 64)(39 63)(40 62)(41 61)(42 72)(43 71)(44 70)(45 69)(46 68)(47 67)(48 66)(73 77)(74 76)(78 84)(79 83)(80 82)(85 91)(86 90)(87 89)(92 96)(93 95)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,60,30,69,75,13,94,45)(2,53,31,62,76,18,95,38)(3,58,32,67,77,23,96,43)(4,51,33,72,78,16,85,48)(5,56,34,65,79,21,86,41)(6,49,35,70,80,14,87,46)(7,54,36,63,81,19,88,39)(8,59,25,68,82,24,89,44)(9,52,26,61,83,17,90,37)(10,57,27,66,84,22,91,42)(11,50,28,71,73,15,92,47)(12,55,29,64,74,20,93,40), (2,12)(3,11)(4,10)(5,9)(6,8)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,35)(26,34)(27,33)(28,32)(29,31)(37,65)(38,64)(39,63)(40,62)(41,61)(42,72)(43,71)(44,70)(45,69)(46,68)(47,67)(48,66)(73,77)(74,76)(78,84)(79,83)(80,82)(85,91)(86,90)(87,89)(92,96)(93,95)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,60,30,69,75,13,94,45)(2,53,31,62,76,18,95,38)(3,58,32,67,77,23,96,43)(4,51,33,72,78,16,85,48)(5,56,34,65,79,21,86,41)(6,49,35,70,80,14,87,46)(7,54,36,63,81,19,88,39)(8,59,25,68,82,24,89,44)(9,52,26,61,83,17,90,37)(10,57,27,66,84,22,91,42)(11,50,28,71,73,15,92,47)(12,55,29,64,74,20,93,40), (2,12)(3,11)(4,10)(5,9)(6,8)(13,60)(14,59)(15,58)(16,57)(17,56)(18,55)(19,54)(20,53)(21,52)(22,51)(23,50)(24,49)(25,35)(26,34)(27,33)(28,32)(29,31)(37,65)(38,64)(39,63)(40,62)(41,61)(42,72)(43,71)(44,70)(45,69)(46,68)(47,67)(48,66)(73,77)(74,76)(78,84)(79,83)(80,82)(85,91)(86,90)(87,89)(92,96)(93,95) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,60,30,69,75,13,94,45),(2,53,31,62,76,18,95,38),(3,58,32,67,77,23,96,43),(4,51,33,72,78,16,85,48),(5,56,34,65,79,21,86,41),(6,49,35,70,80,14,87,46),(7,54,36,63,81,19,88,39),(8,59,25,68,82,24,89,44),(9,52,26,61,83,17,90,37),(10,57,27,66,84,22,91,42),(11,50,28,71,73,15,92,47),(12,55,29,64,74,20,93,40)], [(2,12),(3,11),(4,10),(5,9),(6,8),(13,60),(14,59),(15,58),(16,57),(17,56),(18,55),(19,54),(20,53),(21,52),(22,51),(23,50),(24,49),(25,35),(26,34),(27,33),(28,32),(29,31),(37,65),(38,64),(39,63),(40,62),(41,61),(42,72),(43,71),(44,70),(45,69),(46,68),(47,67),(48,66),(73,77),(74,76),(78,84),(79,83),(80,82),(85,91),(86,90),(87,89),(92,96),(93,95)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A8B8C8D8E···8L12A12B12C12D12E12F12G12H24A···24H
order1222223444444444466688888···8121212121212121224···24
size11111212211112222121222244446···6222244444···4

48 irreducible representations

dim111111111222222222444
type++++++++++++
imageC1C2C2C2C2C2C4C4C4S3D4D6D6M4(2)C4○D4C4×S3C8○D4C8⋊S3S3×D4Q83S3D12.C4
kernelC122M4(2)C4×C3⋊C8D6⋊C8C3×C4⋊C8C4×D12C2×C8⋊S3C4⋊Dic3D6⋊C4C2×D12C4⋊C8C3⋊C8C42C2×C8C12C12C2×C4C6C4C4C4C2
# reps112112242121242448112

Matrix representation of C122M4(2) in GL6(𝔽73)

100000
010000
0007200
001100
00002771
0000046
,
4930000
18240000
0072000
001100
0000270
0000027
,
100000
16720000
001000
00727200
000010
00002772

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,1,0,0,0,0,0,0,27,0,0,0,0,0,71,46],[49,18,0,0,0,0,3,24,0,0,0,0,0,0,72,1,0,0,0,0,0,1,0,0,0,0,0,0,27,0,0,0,0,0,0,27],[1,16,0,0,0,0,0,72,0,0,0,0,0,0,1,72,0,0,0,0,0,72,0,0,0,0,0,0,1,27,0,0,0,0,0,72] >;

C122M4(2) in GAP, Magma, Sage, TeX

C_{12}\rtimes_2M_4(2)
% in TeX

G:=Group("C12:2M4(2)");
// GroupNames label

G:=SmallGroup(192,397);
// by ID

G=gap.SmallGroup(192,397);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,758,219,58,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,b*a*b^-1=a^5,c*a*c=a^-1,c*b*c=b^5>;
// generators/relations

׿
×
𝔽