Extensions 1→N→G→Q→1 with N=C3×Q8 and Q=Q8

Direct product G=N×Q with N=C3×Q8 and Q=Q8
dρLabelID
C3×Q82192C3xQ8^2192,1447

Semidirect products G=N:Q with N=C3×Q8 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C3×Q8)⋊1Q8 = Q82Dic6φ: Q8/C2C22 ⊆ Out C3×Q8192(C3xQ8):1Q8192,350
(C3×Q8)⋊2Q8 = Q83Dic6φ: Q8/C2C22 ⊆ Out C3×Q8192(C3xQ8):2Q8192,352
(C3×Q8)⋊3Q8 = Q84Dic6φ: Q8/C4C2 ⊆ Out C3×Q8192(C3xQ8):3Q8192,579
(C3×Q8)⋊4Q8 = Q85Dic6φ: Q8/C4C2 ⊆ Out C3×Q8192(C3xQ8):4Q8192,580
(C3×Q8)⋊5Q8 = Q8×Dic6φ: Q8/C4C2 ⊆ Out C3×Q8192(C3xQ8):5Q8192,1125
(C3×Q8)⋊6Q8 = Q86Dic6φ: Q8/C4C2 ⊆ Out C3×Q8192(C3xQ8):6Q8192,1128
(C3×Q8)⋊7Q8 = Q87Dic6φ: Q8/C4C2 ⊆ Out C3×Q8192(C3xQ8):7Q8192,1129
(C3×Q8)⋊8Q8 = C3×Q8⋊Q8φ: Q8/C4C2 ⊆ Out C3×Q8192(C3xQ8):8Q8192,908
(C3×Q8)⋊9Q8 = C3×C4.Q16φ: Q8/C4C2 ⊆ Out C3×Q8192(C3xQ8):9Q8192,910
(C3×Q8)⋊10Q8 = C3×Q83Q8φ: trivial image192(C3xQ8):10Q8192,1446

Non-split extensions G=N.Q with N=C3×Q8 and Q=Q8
extensionφ:Q→Out NdρLabelID
(C3×Q8).1Q8 = Q8.3Dic6φ: Q8/C2C22 ⊆ Out C3×Q8192(C3xQ8).1Q8192,355
(C3×Q8).2Q8 = Q8.4Dic6φ: Q8/C2C22 ⊆ Out C3×Q8192(C3xQ8).2Q8192,358
(C3×Q8).3Q8 = Q8.5Dic6φ: Q8/C4C2 ⊆ Out C3×Q8192(C3xQ8).3Q8192,581
(C3×Q8).4Q8 = C3×Q8.Q8φ: Q8/C4C2 ⊆ Out C3×Q8192(C3xQ8).4Q8192,912

׿
×
𝔽