direct product, metacyclic, nilpotent (class 2), monomial, 2-elementary
Aliases: C3×Q8, C4.C6, C12.3C2, C6.7C22, C2.2(C2×C6), SmallGroup(24,11)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×Q8
G = < a,b,c | a3=b4=1, c2=b2, ab=ba, ac=ca, cbc-1=b-1 >
Character table of C3×Q8
class | 1 | 2 | 3A | 3B | 4A | 4B | 4C | 6A | 6B | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | ζ32 | ζ3 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | ζ32 | ζ32 | ζ3 | ζ3 | linear of order 3 |
ρ6 | 1 | 1 | ζ32 | ζ3 | 1 | -1 | -1 | ζ32 | ζ3 | ζ6 | ζ65 | ζ6 | ζ32 | ζ65 | ζ3 | linear of order 6 |
ρ7 | 1 | 1 | ζ32 | ζ3 | -1 | -1 | 1 | ζ32 | ζ3 | ζ32 | ζ65 | ζ6 | ζ6 | ζ3 | ζ65 | linear of order 6 |
ρ8 | 1 | 1 | ζ32 | ζ3 | -1 | 1 | -1 | ζ32 | ζ3 | ζ6 | ζ3 | ζ32 | ζ6 | ζ65 | ζ65 | linear of order 6 |
ρ9 | 1 | 1 | ζ3 | ζ32 | -1 | 1 | -1 | ζ3 | ζ32 | ζ65 | ζ32 | ζ3 | ζ65 | ζ6 | ζ6 | linear of order 6 |
ρ10 | 1 | 1 | ζ3 | ζ32 | 1 | -1 | -1 | ζ3 | ζ32 | ζ65 | ζ6 | ζ65 | ζ3 | ζ6 | ζ32 | linear of order 6 |
ρ11 | 1 | 1 | ζ3 | ζ32 | -1 | -1 | 1 | ζ3 | ζ32 | ζ3 | ζ6 | ζ65 | ζ65 | ζ32 | ζ6 | linear of order 6 |
ρ12 | 1 | 1 | ζ3 | ζ32 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | ζ3 | ζ3 | ζ32 | ζ32 | linear of order 3 |
ρ13 | 2 | -2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ14 | 2 | -2 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
ρ15 | 2 | -2 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | 0 | 0 | complex faithful |
(1 16 11)(2 13 12)(3 14 9)(4 15 10)(5 19 21)(6 20 22)(7 17 23)(8 18 24)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)
(1 23 3 21)(2 22 4 24)(5 16 7 14)(6 15 8 13)(9 19 11 17)(10 18 12 20)
G:=sub<Sym(24)| (1,16,11)(2,13,12)(3,14,9)(4,15,10)(5,19,21)(6,20,22)(7,17,23)(8,18,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,23,3,21)(2,22,4,24)(5,16,7,14)(6,15,8,13)(9,19,11,17)(10,18,12,20)>;
G:=Group( (1,16,11)(2,13,12)(3,14,9)(4,15,10)(5,19,21)(6,20,22)(7,17,23)(8,18,24), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24), (1,23,3,21)(2,22,4,24)(5,16,7,14)(6,15,8,13)(9,19,11,17)(10,18,12,20) );
G=PermutationGroup([[(1,16,11),(2,13,12),(3,14,9),(4,15,10),(5,19,21),(6,20,22),(7,17,23),(8,18,24)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24)], [(1,23,3,21),(2,22,4,24),(5,16,7,14),(6,15,8,13),(9,19,11,17),(10,18,12,20)]])
G:=TransitiveGroup(24,4);
C3×Q8 is a maximal subgroup of
Q8⋊2S3 C3⋊Q16 Q8⋊3S3 Q8⋊C9 Q8.A4 C4.F7 SU3(𝔽2) Dic26⋊C3 Dic38⋊C3
C3×Q8 is a maximal quotient of
C4.F7 Dic26⋊C3 Dic38⋊C3
Matrix representation of C3×Q8 ►in GL2(𝔽7) generated by
2 | 0 |
0 | 2 |
4 | 5 |
5 | 3 |
0 | 6 |
1 | 0 |
G:=sub<GL(2,GF(7))| [2,0,0,2],[4,5,5,3],[0,1,6,0] >;
C3×Q8 in GAP, Magma, Sage, TeX
C_3\times Q_8
% in TeX
G:=Group("C3xQ8");
// GroupNames label
G:=SmallGroup(24,11);
// by ID
G=gap.SmallGroup(24,11);
# by ID
G:=PCGroup([4,-2,-2,-3,-2,48,113,53]);
// Polycyclic
G:=Group<a,b,c|a^3=b^4=1,c^2=b^2,a*b=b*a,a*c=c*a,c*b*c^-1=b^-1>;
// generators/relations
Export
Subgroup lattice of C3×Q8 in TeX
Character table of C3×Q8 in TeX