Extensions 1→N→G→Q→1 with N=C4×Q8 and Q=S3

Direct product G=N×Q with N=C4×Q8 and Q=S3
dρLabelID
C4×S3×Q896C4xS3xQ8192,1130

Semidirect products G=N:Q with N=C4×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×Q8)⋊1S3 = C4×GL2(𝔽3)φ: S3/C1S3 ⊆ Out C4×Q832(C4xQ8):1S3192,951
(C4×Q8)⋊2S3 = Q8⋊D12φ: S3/C1S3 ⊆ Out C4×Q832(C4xQ8):2S3192,952
(C4×Q8)⋊3S3 = GL2(𝔽3)⋊C4φ: S3/C1S3 ⊆ Out C4×Q832(C4xQ8):3S3192,953
(C4×Q8)⋊4S3 = Q8.2D12φ: S3/C1S3 ⊆ Out C4×Q832(C4xQ8):4S3192,954
(C4×Q8)⋊5S3 = C4×Q82S3φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):5S3192,584
(C4×Q8)⋊6S3 = C42.56D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):6S3192,585
(C4×Q8)⋊7S3 = Q82D12φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):7S3192,586
(C4×Q8)⋊8S3 = Q8.6D12φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):8S3192,587
(C4×Q8)⋊9S3 = C42.122D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):9S3192,1127
(C4×Q8)⋊10S3 = C42.125D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):10S3192,1131
(C4×Q8)⋊11S3 = C42.126D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):11S3192,1133
(C4×Q8)⋊12S3 = Q8×D12φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):12S3192,1134
(C4×Q8)⋊13S3 = Q86D12φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):13S3192,1135
(C4×Q8)⋊14S3 = Q87D12φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):14S3192,1136
(C4×Q8)⋊15S3 = C42.232D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):15S3192,1137
(C4×Q8)⋊16S3 = D1210Q8φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):16S3192,1138
(C4×Q8)⋊17S3 = C42.131D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):17S3192,1139
(C4×Q8)⋊18S3 = C42.132D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):18S3192,1140
(C4×Q8)⋊19S3 = C42.133D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):19S3192,1141
(C4×Q8)⋊20S3 = C42.134D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):20S3192,1142
(C4×Q8)⋊21S3 = C42.135D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):21S3192,1143
(C4×Q8)⋊22S3 = C42.136D6φ: S3/C3C2 ⊆ Out C4×Q896(C4xQ8):22S3192,1144
(C4×Q8)⋊23S3 = C4×Q83S3φ: trivial image96(C4xQ8):23S3192,1132

Non-split extensions G=N.Q with N=C4×Q8 and Q=S3
extensionφ:Q→Out NdρLabelID
(C4×Q8).1S3 = C2.U2(𝔽3)φ: S3/C1S3 ⊆ Out C4×Q864(C4xQ8).1S3192,183
(C4×Q8).2S3 = Q8⋊Dic6φ: S3/C1S3 ⊆ Out C4×Q864(C4xQ8).2S3192,945
(C4×Q8).3S3 = C4×CSU2(𝔽3)φ: S3/C1S3 ⊆ Out C4×Q864(C4xQ8).3S3192,946
(C4×Q8).4S3 = CSU2(𝔽3)⋊C4φ: S3/C1S3 ⊆ Out C4×Q864(C4xQ8).4S3192,947
(C4×Q8).5S3 = Q8.Dic6φ: S3/C1S3 ⊆ Out C4×Q864(C4xQ8).5S3192,948
(C4×Q8).6S3 = Q8.D12φ: S3/C1S3 ⊆ Out C4×Q864(C4xQ8).6S3192,949
(C4×Q8).7S3 = SL2(𝔽3)⋊Q8φ: S3/C1S3 ⊆ Out C4×Q864(C4xQ8).7S3192,950
(C4×Q8).8S3 = C12.26Q16φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).8S3192,94
(C4×Q8).9S3 = Q84Dic6φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).9S3192,579
(C4×Q8).10S3 = Q85Dic6φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).10S3192,580
(C4×Q8).11S3 = Q8.5Dic6φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).11S3192,581
(C4×Q8).12S3 = C42.210D6φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).12S3192,583
(C4×Q8).13S3 = C4×C3⋊Q16φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).13S3192,588
(C4×Q8).14S3 = C42.59D6φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).14S3192,589
(C4×Q8).15S3 = C127Q16φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).15S3192,590
(C4×Q8).16S3 = Q8×Dic6φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).16S3192,1125
(C4×Q8).17S3 = Dic610Q8φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).17S3192,1126
(C4×Q8).18S3 = Q86Dic6φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).18S3192,1128
(C4×Q8).19S3 = Q87Dic6φ: S3/C3C2 ⊆ Out C4×Q8192(C4xQ8).19S3192,1129
(C4×Q8).20S3 = Q8×C3⋊C8φ: trivial image192(C4xQ8).20S3192,582

׿
×
𝔽