Extensions 1→N→G→Q→1 with N=C4 and Q=C4×A4

Direct product G=N×Q with N=C4 and Q=C4×A4

Semidirect products G=N:Q with N=C4 and Q=C4×A4
extensionφ:Q→Aut NdρLabelID
C4⋊(C4×A4) = A4×C4⋊C4φ: C4×A4/C2×A4C2 ⊆ Aut C448C4:(C4xA4)192,995

Non-split extensions G=N.Q with N=C4 and Q=C4×A4
extensionφ:Q→Aut NdρLabelID
C4.1(C4×A4) = C4○D4⋊C12φ: C4×A4/C2×A4C2 ⊆ Aut C464C4.1(C4xA4)192,999
C4.2(C4×A4) = A4×M4(2)φ: C4×A4/C2×A4C2 ⊆ Aut C4246C4.2(C4xA4)192,1011
C4.3(C4×A4) = M4(2).A4φ: C4×A4/C2×A4C2 ⊆ Aut C4324C4.3(C4xA4)192,1013
C4.4(C4×A4) = A4×C16central extension (φ=1)483C4.4(C4xA4)192,203
C4.5(C4×A4) = C16.A4central extension (φ=1)642C4.5(C4xA4)192,204
C4.6(C4×A4) = C4×C4.A4central extension (φ=1)64C4.6(C4xA4)192,997
C4.7(C4×A4) = A4×C2×C8central extension (φ=1)48C4.7(C4xA4)192,1010
C4.8(C4×A4) = C2×C8.A4central extension (φ=1)64C4.8(C4xA4)192,1012