direct product, metabelian, soluble, monomial, A-group
Aliases: C2×A4, C2≀C3, AΣL1(𝔽8), C23⋊C3, C22⋊C6, SmallGroup(24,13)
Series: Derived ►Chief ►Lower central ►Upper central
C22 — C2×A4 |
Generators and relations for C2×A4
G = < a,b,c,d | a2=b2=c2=d3=1, ab=ba, ac=ca, ad=da, dbd-1=bc=cb, dcd-1=b >
Character table of C2×A4
class | 1 | 2A | 2B | 2C | 3A | 3B | 6A | 6B | |
size | 1 | 1 | 3 | 3 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | ζ32 | ζ3 | ζ32 | ζ3 | linear of order 3 |
ρ4 | 1 | -1 | -1 | 1 | ζ32 | ζ3 | ζ6 | ζ65 | linear of order 6 |
ρ5 | 1 | -1 | -1 | 1 | ζ3 | ζ32 | ζ65 | ζ6 | linear of order 6 |
ρ6 | 1 | 1 | 1 | 1 | ζ3 | ζ32 | ζ3 | ζ32 | linear of order 3 |
ρ7 | 3 | 3 | -1 | -1 | 0 | 0 | 0 | 0 | orthogonal lifted from A4 |
ρ8 | 3 | -3 | 1 | -1 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 4)(2 5)(3 6)
(2 5)(3 6)
(1 4)(3 6)
(1 2 3)(4 5 6)
G:=sub<Sym(6)| (1,4)(2,5)(3,6), (2,5)(3,6), (1,4)(3,6), (1,2,3)(4,5,6)>;
G:=Group( (1,4)(2,5)(3,6), (2,5)(3,6), (1,4)(3,6), (1,2,3)(4,5,6) );
G=PermutationGroup([[(1,4),(2,5),(3,6)], [(2,5),(3,6)], [(1,4),(3,6)], [(1,2,3),(4,5,6)]])
G:=TransitiveGroup(6,6);
(1 2)(3 6)(4 7)(5 8)
(1 6)(2 3)(4 5)(7 8)
(1 7)(2 4)(3 5)(6 8)
(3 4 5)(6 7 8)
G:=sub<Sym(8)| (1,2)(3,6)(4,7)(5,8), (1,6)(2,3)(4,5)(7,8), (1,7)(2,4)(3,5)(6,8), (3,4,5)(6,7,8)>;
G:=Group( (1,2)(3,6)(4,7)(5,8), (1,6)(2,3)(4,5)(7,8), (1,7)(2,4)(3,5)(6,8), (3,4,5)(6,7,8) );
G=PermutationGroup([[(1,2),(3,6),(4,7),(5,8)], [(1,6),(2,3),(4,5),(7,8)], [(1,7),(2,4),(3,5),(6,8)], [(3,4,5),(6,7,8)]])
G:=TransitiveGroup(8,13);
(1 4)(2 5)(3 6)(7 12)(8 10)(9 11)
(1 4)(2 9)(3 12)(5 11)(6 7)(8 10)
(1 10)(2 5)(3 7)(4 8)(6 12)(9 11)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
G:=sub<Sym(12)| (1,4)(2,5)(3,6)(7,12)(8,10)(9,11), (1,4)(2,9)(3,12)(5,11)(6,7)(8,10), (1,10)(2,5)(3,7)(4,8)(6,12)(9,11), (1,2,3)(4,5,6)(7,8,9)(10,11,12)>;
G:=Group( (1,4)(2,5)(3,6)(7,12)(8,10)(9,11), (1,4)(2,9)(3,12)(5,11)(6,7)(8,10), (1,10)(2,5)(3,7)(4,8)(6,12)(9,11), (1,2,3)(4,5,6)(7,8,9)(10,11,12) );
G=PermutationGroup([[(1,4),(2,5),(3,6),(7,12),(8,10),(9,11)], [(1,4),(2,9),(3,12),(5,11),(6,7),(8,10)], [(1,10),(2,5),(3,7),(4,8),(6,12),(9,11)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)]])
G:=TransitiveGroup(12,6);
(1 10)(2 11)(3 12)(4 7)(5 8)(6 9)
(2 8)(3 9)(5 11)(6 12)
(1 7)(3 9)(4 10)(6 12)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)
G:=sub<Sym(12)| (1,10)(2,11)(3,12)(4,7)(5,8)(6,9), (2,8)(3,9)(5,11)(6,12), (1,7)(3,9)(4,10)(6,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12)>;
G:=Group( (1,10)(2,11)(3,12)(4,7)(5,8)(6,9), (2,8)(3,9)(5,11)(6,12), (1,7)(3,9)(4,10)(6,12), (1,2,3)(4,5,6)(7,8,9)(10,11,12) );
G=PermutationGroup([[(1,10),(2,11),(3,12),(4,7),(5,8),(6,9)], [(2,8),(3,9),(5,11),(6,12)], [(1,7),(3,9),(4,10),(6,12)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12)]])
G:=TransitiveGroup(12,7);
(1 4)(2 5)(3 6)(7 17)(8 18)(9 16)(10 22)(11 23)(12 24)(13 21)(14 19)(15 20)
(1 15)(2 16)(3 12)(4 20)(5 9)(6 24)(7 19)(8 22)(10 18)(11 13)(14 17)(21 23)
(1 10)(2 13)(3 17)(4 22)(5 21)(6 7)(8 20)(9 23)(11 16)(12 14)(15 18)(19 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)
G:=sub<Sym(24)| (1,4)(2,5)(3,6)(7,17)(8,18)(9,16)(10,22)(11,23)(12,24)(13,21)(14,19)(15,20), (1,15)(2,16)(3,12)(4,20)(5,9)(6,24)(7,19)(8,22)(10,18)(11,13)(14,17)(21,23), (1,10)(2,13)(3,17)(4,22)(5,21)(6,7)(8,20)(9,23)(11,16)(12,14)(15,18)(19,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)>;
G:=Group( (1,4)(2,5)(3,6)(7,17)(8,18)(9,16)(10,22)(11,23)(12,24)(13,21)(14,19)(15,20), (1,15)(2,16)(3,12)(4,20)(5,9)(6,24)(7,19)(8,22)(10,18)(11,13)(14,17)(21,23), (1,10)(2,13)(3,17)(4,22)(5,21)(6,7)(8,20)(9,23)(11,16)(12,14)(15,18)(19,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24) );
G=PermutationGroup([[(1,4),(2,5),(3,6),(7,17),(8,18),(9,16),(10,22),(11,23),(12,24),(13,21),(14,19),(15,20)], [(1,15),(2,16),(3,12),(4,20),(5,9),(6,24),(7,19),(8,22),(10,18),(11,13),(14,17),(21,23)], [(1,10),(2,13),(3,17),(4,22),(5,21),(6,7),(8,20),(9,23),(11,16),(12,14),(15,18),(19,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24)]])
G:=TransitiveGroup(24,9);
C2×A4 is a maximal subgroup of
A4⋊C4 C23.3A4 C24⋊C6 C42⋊C6 C23.A4 Q8⋊A4 C23⋊A4 AΓL1(𝔽8) D7⋊A4 D13⋊A4 D19⋊A4
C2×A4 is a maximal quotient of
C4.A4 C24⋊C6 C42⋊C6 C23.A4 D7⋊A4 D13⋊A4 D19⋊A4
action | f(x) | Disc(f) |
---|---|---|
6T6 | x6-x4-2x2+1 | -26·74 |
8T13 | x8-x7+x6-x5-x4+x3+x2+x+1 | 74·134 |
12T6 | x12-20x10+148x8-503x6+800x4-512x2+64 | 242·114·438 |
12T7 | x12-21x10+135x8-345x6+321x4-39x2+1 | 212·316·176·12794 |
Matrix representation of C2×A4 ►in GL3(ℤ) generated by
-1 | 0 | 0 |
0 | -1 | 0 |
0 | 0 | -1 |
1 | 0 | 0 |
0 | -1 | 0 |
0 | 0 | -1 |
-1 | 0 | 0 |
0 | -1 | 0 |
0 | 0 | 1 |
0 | 1 | 0 |
0 | 0 | 1 |
1 | 0 | 0 |
G:=sub<GL(3,Integers())| [-1,0,0,0,-1,0,0,0,-1],[1,0,0,0,-1,0,0,0,-1],[-1,0,0,0,-1,0,0,0,1],[0,0,1,1,0,0,0,1,0] >;
C2×A4 in GAP, Magma, Sage, TeX
C_2\times A_4
% in TeX
G:=Group("C2xA4");
// GroupNames label
G:=SmallGroup(24,13);
// by ID
G=gap.SmallGroup(24,13);
# by ID
G:=PCGroup([4,-2,-3,-2,2,78,151]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^2=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,d*b*d^-1=b*c=c*b,d*c*d^-1=b>;
// generators/relations
Export
Subgroup lattice of C2×A4 in TeX
Character table of C2×A4 in TeX