Extensions 1→N→G→Q→1 with N=D42S3 and Q=C4

Direct product G=N×Q with N=D42S3 and Q=C4
dρLabelID
C4×D42S396C4xD4:2S3192,1095

Semidirect products G=N:Q with N=D42S3 and Q=C4
extensionφ:Q→Out NdρLabelID
D42S31C4 = D4⋊(C4×S3)φ: C4/C2C2 ⊆ Out D42S396D4:2S3:1C4192,330
D42S32C4 = D42S3⋊C4φ: C4/C2C2 ⊆ Out D42S396D4:2S3:2C4192,331
D42S33C4 = S3×C4≀C2φ: C4/C2C2 ⊆ Out D42S3244D4:2S3:3C4192,379
D42S34C4 = C423D6φ: C4/C2C2 ⊆ Out D42S3484D4:2S3:4C4192,380
D42S35C4 = C42.108D6φ: C4/C2C2 ⊆ Out D42S396D4:2S3:5C4192,1105

Non-split extensions G=N.Q with N=D42S3 and Q=C4
extensionφ:Q→Out NdρLabelID
D42S3.C4 = M4(2)⋊28D6φ: C4/C2C2 ⊆ Out D42S3484D4:2S3.C4192,1309
D42S3.2C4 = S3×C8○D4φ: trivial image484D4:2S3.2C4192,1308

׿
×
𝔽