Copied to
clipboard

G = S3×C8○D4order 192 = 26·3

Direct product of S3 and C8○D4

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: S3×C8○D4, M4(2)⋊27D6, C12.71C24, C24.53C23, (C2×C8)⋊30D6, (S3×D4).2C4, (S3×Q8).2C4, C8○D1216C2, C4○D4.58D6, D4.12(C4×S3), C3⋊C8.36C23, Q8.18(C4×S3), (S3×C8)⋊20C22, D12.C414C2, (C2×C24)⋊31C22, D12.20(C2×C4), D42S3.2C4, C6.34(C23×C4), C4.70(S3×C23), C8.66(C22×S3), Q83S3.2C4, C8⋊S320C22, (S3×M4(2))⋊12C2, D4.Dic314C2, (C4×S3).41C23, C12.38(C22×C4), Dic6.21(C2×C4), D6.15(C22×C4), (C2×C12).513C23, C4○D12.51C22, C4.Dic326C22, (C3×M4(2))⋊32C22, Dic3.15(C22×C4), C33(C2×C8○D4), (S3×C2×C8)⋊30C2, C4.38(S3×C2×C4), C22.4(S3×C2×C4), (C3×C8○D4)⋊13C2, (C2×C3⋊C8)⋊34C22, (S3×C4○D4).5C2, C3⋊D4.1(C2×C4), C2.35(S3×C22×C4), (C4×S3).18(C2×C4), (C3×D4).16(C2×C4), (C2×C6).4(C22×C4), (C3×Q8).17(C2×C4), (S3×C2×C4).254C22, (C22×S3).47(C2×C4), (C2×C4).606(C22×S3), (C2×Dic3).73(C2×C4), (C3×C4○D4).43C22, SmallGroup(192,1308)

Series: Derived Chief Lower central Upper central

C1C6 — S3×C8○D4
C1C3C6C12C4×S3S3×C2×C4S3×C4○D4 — S3×C8○D4
C3C6 — S3×C8○D4
C1C8C8○D4

Generators and relations for S3×C8○D4
 G = < a,b,c,d,e | a3=b2=c8=e2=1, d2=c4, bab=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c4d >

Subgroups: 512 in 266 conjugacy classes, 149 normal (24 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, S3, C6, C6, C8, C8, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, D6, C2×C6, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C2×D4, C2×Q8, C4○D4, C4○D4, C3⋊C8, C3⋊C8, C24, C24, Dic6, C4×S3, C4×S3, D12, C2×Dic3, C3⋊D4, C2×C12, C3×D4, C3×Q8, C22×S3, C22×C8, C2×M4(2), C8○D4, C8○D4, C2×C4○D4, S3×C8, S3×C8, C8⋊S3, C2×C3⋊C8, C4.Dic3, C2×C24, C3×M4(2), S3×C2×C4, C4○D12, S3×D4, D42S3, S3×Q8, Q83S3, C3×C4○D4, C2×C8○D4, S3×C2×C8, C8○D12, S3×M4(2), D12.C4, D4.Dic3, C3×C8○D4, S3×C4○D4, S3×C8○D4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, D6, C22×C4, C24, C4×S3, C22×S3, C8○D4, C23×C4, S3×C2×C4, S3×C23, C2×C8○D4, S3×C22×C4, S3×C8○D4

Smallest permutation representation of S3×C8○D4
On 48 points
Generators in S48
(1 26 35)(2 27 36)(3 28 37)(4 29 38)(5 30 39)(6 31 40)(7 32 33)(8 25 34)(9 44 23)(10 45 24)(11 46 17)(12 47 18)(13 48 19)(14 41 20)(15 42 21)(16 43 22)
(17 46)(18 47)(19 48)(20 41)(21 42)(22 43)(23 44)(24 45)(25 34)(26 35)(27 36)(28 37)(29 38)(30 39)(31 40)(32 33)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 15 5 11)(2 16 6 12)(3 9 7 13)(4 10 8 14)(17 35 21 39)(18 36 22 40)(19 37 23 33)(20 38 24 34)(25 41 29 45)(26 42 30 46)(27 43 31 47)(28 44 32 48)
(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(41 45)(42 46)(43 47)(44 48)

G:=sub<Sym(48)| (1,26,35)(2,27,36)(3,28,37)(4,29,38)(5,30,39)(6,31,40)(7,32,33)(8,25,34)(9,44,23)(10,45,24)(11,46,17)(12,47,18)(13,48,19)(14,41,20)(15,42,21)(16,43,22), (17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,16,6,12)(3,9,7,13)(4,10,8,14)(17,35,21,39)(18,36,22,40)(19,37,23,33)(20,38,24,34)(25,41,29,45)(26,42,30,46)(27,43,31,47)(28,44,32,48), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48)>;

G:=Group( (1,26,35)(2,27,36)(3,28,37)(4,29,38)(5,30,39)(6,31,40)(7,32,33)(8,25,34)(9,44,23)(10,45,24)(11,46,17)(12,47,18)(13,48,19)(14,41,20)(15,42,21)(16,43,22), (17,46)(18,47)(19,48)(20,41)(21,42)(22,43)(23,44)(24,45)(25,34)(26,35)(27,36)(28,37)(29,38)(30,39)(31,40)(32,33), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,15,5,11)(2,16,6,12)(3,9,7,13)(4,10,8,14)(17,35,21,39)(18,36,22,40)(19,37,23,33)(20,38,24,34)(25,41,29,45)(26,42,30,46)(27,43,31,47)(28,44,32,48), (9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(41,45)(42,46)(43,47)(44,48) );

G=PermutationGroup([[(1,26,35),(2,27,36),(3,28,37),(4,29,38),(5,30,39),(6,31,40),(7,32,33),(8,25,34),(9,44,23),(10,45,24),(11,46,17),(12,47,18),(13,48,19),(14,41,20),(15,42,21),(16,43,22)], [(17,46),(18,47),(19,48),(20,41),(21,42),(22,43),(23,44),(24,45),(25,34),(26,35),(27,36),(28,37),(29,38),(30,39),(31,40),(32,33)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,15,5,11),(2,16,6,12),(3,9,7,13),(4,10,8,14),(17,35,21,39),(18,36,22,40),(19,37,23,33),(20,38,24,34),(25,41,29,45),(26,42,30,46),(27,43,31,47),(28,44,32,48)], [(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(41,45),(42,46),(43,47),(44,48)]])

60 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D8A8B8C8D8E···8J8K8L8M8N8O···8T12A12B12C12D12E24A24B24C24D24E···24J
order122222222234444444444666688888···888888···812121212122424242424···24
size112223366621122233666244411112···233336···62244422224···4

60 irreducible representations

dim11111111111122222224
type++++++++++++
imageC1C2C2C2C2C2C2C2C4C4C4C4S3D6D6D6C4×S3C4×S3C8○D4S3×C8○D4
kernelS3×C8○D4S3×C2×C8C8○D12S3×M4(2)D12.C4D4.Dic3C3×C8○D4S3×C4○D4S3×D4D42S3S3×Q8Q83S3C8○D4C2×C8M4(2)C4○D4D4Q8S3C1
# reps13333111662213316284

Matrix representation of S3×C8○D4 in GL4(𝔽73) generated by

07200
17200
0010
0001
,
17200
07200
0010
0001
,
27000
02700
00220
00022
,
72000
07200
00072
0010
,
1000
0100
0010
00072
G:=sub<GL(4,GF(73))| [0,1,0,0,72,72,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,72,72,0,0,0,0,1,0,0,0,0,1],[27,0,0,0,0,27,0,0,0,0,22,0,0,0,0,22],[72,0,0,0,0,72,0,0,0,0,0,1,0,0,72,0],[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,72] >;

S3×C8○D4 in GAP, Magma, Sage, TeX

S_3\times C_8\circ D_4
% in TeX

G:=Group("S3xC8oD4");
// GroupNames label

G:=SmallGroup(192,1308);
// by ID

G=gap.SmallGroup(192,1308);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,80,102,6278]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^8=e^2=1,d^2=c^4,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^4*d>;
// generators/relations

׿
×
𝔽