# Extensions 1→N→G→Q→1 with N=C22 and Q=C22×Dic3

Direct product G=N×Q with N=C22 and Q=C22×Dic3
dρLabelID
Dic3×C24192Dic3xC2^4192,1528

Semidirect products G=N:Q with N=C22 and Q=C22×Dic3
extensionφ:Q→Aut NdρLabelID
C22⋊(C22×Dic3) = C22×A4⋊C4φ: C22×Dic3/C23S3 ⊆ Aut C2248C2^2:(C2^2xDic3)192,1487
C222(C22×Dic3) = C2×D4×Dic3φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C2296C2^2:2(C2^2xDic3)192,1354
C223(C22×Dic3) = C22×C6.D4φ: C22×Dic3/C22×C6C2 ⊆ Aut C2296C2^2:3(C2^2xDic3)192,1398

Non-split extensions G=N.Q with N=C22 and Q=C22×Dic3
extensionφ:Q→Aut NdρLabelID
C22.1(C22×Dic3) = C24.49D6φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C2248C2^2.1(C2^2xDic3)192,1357
C22.2(C22×Dic3) = C12.76C24φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C22484C2^2.2(C2^2xDic3)192,1378
C22.3(C22×Dic3) = Dic3×C4○D4φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C2296C2^2.3(C2^2xDic3)192,1385
C22.4(C22×Dic3) = C6.1442+ 1+4φ: C22×Dic3/C2×Dic3C2 ⊆ Aut C2296C2^2.4(C2^2xDic3)192,1386
C22.5(C22×Dic3) = C2×C12.D4φ: C22×Dic3/C22×C6C2 ⊆ Aut C2248C2^2.5(C2^2xDic3)192,775
C22.6(C22×Dic3) = C2×C23.7D6φ: C22×Dic3/C22×C6C2 ⊆ Aut C2248C2^2.6(C2^2xDic3)192,778
C22.7(C22×Dic3) = C2×C12.10D4φ: C22×Dic3/C22×C6C2 ⊆ Aut C2296C2^2.7(C2^2xDic3)192,785
C22.8(C22×Dic3) = (C6×D4).16C4φ: C22×Dic3/C22×C6C2 ⊆ Aut C22484C2^2.8(C2^2xDic3)192,796
C22.9(C22×Dic3) = (C6×D4)⋊10C4φ: C22×Dic3/C22×C6C2 ⊆ Aut C22484C2^2.9(C2^2xDic3)192,799
C22.10(C22×Dic3) = C6.422- 1+4φ: C22×Dic3/C22×C6C2 ⊆ Aut C2296C2^2.10(C2^2xDic3)192,1371
C22.11(C22×Dic3) = C2×C4×C3⋊C8central extension (φ=1)192C2^2.11(C2^2xDic3)192,479
C22.12(C22×Dic3) = C2×C42.S3central extension (φ=1)192C2^2.12(C2^2xDic3)192,480
C22.13(C22×Dic3) = C4×C4.Dic3central extension (φ=1)96C2^2.13(C2^2xDic3)192,481
C22.14(C22×Dic3) = C2×C12⋊C8central extension (φ=1)192C2^2.14(C2^2xDic3)192,482
C22.15(C22×Dic3) = C42.285D6central extension (φ=1)96C2^2.15(C2^2xDic3)192,484
C22.16(C22×Dic3) = Dic3×C42central extension (φ=1)192C2^2.16(C2^2xDic3)192,489
C22.17(C22×Dic3) = C426Dic3central extension (φ=1)192C2^2.17(C2^2xDic3)192,491
C22.18(C22×Dic3) = C4×C4⋊Dic3central extension (φ=1)192C2^2.18(C2^2xDic3)192,493
C22.19(C22×Dic3) = Dic3×C22⋊C4central extension (φ=1)96C2^2.19(C2^2xDic3)192,500
C22.20(C22×Dic3) = Dic3×C4⋊C4central extension (φ=1)192C2^2.20(C2^2xDic3)192,533
C22.21(C22×Dic3) = C12.5C42central extension (φ=1)96C2^2.21(C2^2xDic3)192,556
C22.22(C22×Dic3) = D4×C3⋊C8central extension (φ=1)96C2^2.22(C2^2xDic3)192,569
C22.23(C22×Dic3) = Q8×C3⋊C8central extension (φ=1)192C2^2.23(C2^2xDic3)192,582
C22.24(C22×Dic3) = C2×C12.55D4central extension (φ=1)96C2^2.24(C2^2xDic3)192,765
C22.25(C22×Dic3) = C2×C6.C42central extension (φ=1)192C2^2.25(C2^2xDic3)192,767
C22.26(C22×Dic3) = C4×C6.D4central extension (φ=1)96C2^2.26(C2^2xDic3)192,768
C22.27(C22×Dic3) = C23×C3⋊C8central extension (φ=1)192C2^2.27(C2^2xDic3)192,1339
C22.28(C22×Dic3) = C22×C4.Dic3central extension (φ=1)96C2^2.28(C2^2xDic3)192,1340
C22.29(C22×Dic3) = Dic3×C22×C4central extension (φ=1)192C2^2.29(C2^2xDic3)192,1341
C22.30(C22×Dic3) = C22×C4⋊Dic3central extension (φ=1)192C2^2.30(C2^2xDic3)192,1344
C22.31(C22×Dic3) = C2×C23.26D6central extension (φ=1)96C2^2.31(C2^2xDic3)192,1345
C22.32(C22×Dic3) = C2×Q8×Dic3central extension (φ=1)192C2^2.32(C2^2xDic3)192,1370
C22.33(C22×Dic3) = C2×D4.Dic3central extension (φ=1)96C2^2.33(C2^2xDic3)192,1377
C22.34(C22×Dic3) = C127M4(2)central stem extension (φ=1)96C2^2.34(C2^2xDic3)192,483
C22.35(C22×Dic3) = C42.270D6central stem extension (φ=1)96C2^2.35(C2^2xDic3)192,485
C22.36(C22×Dic3) = C4210Dic3central stem extension (φ=1)192C2^2.36(C2^2xDic3)192,494
C22.37(C22×Dic3) = C4211Dic3central stem extension (φ=1)192C2^2.37(C2^2xDic3)192,495
C22.38(C22×Dic3) = C427Dic3central stem extension (φ=1)192C2^2.38(C2^2xDic3)192,496
C22.39(C22×Dic3) = C24.58D6central stem extension (φ=1)96C2^2.39(C2^2xDic3)192,509
C22.40(C22×Dic3) = C24.19D6central stem extension (φ=1)96C2^2.40(C2^2xDic3)192,510
C22.41(C22×Dic3) = C4⋊C45Dic3central stem extension (φ=1)192C2^2.41(C2^2xDic3)192,539
C22.42(C22×Dic3) = C4⋊C46Dic3central stem extension (φ=1)192C2^2.42(C2^2xDic3)192,543
C22.43(C22×Dic3) = C42.43D6central stem extension (φ=1)96C2^2.43(C2^2xDic3)192,558
C22.44(C22×Dic3) = C42.187D6central stem extension (φ=1)96C2^2.44(C2^2xDic3)192,559
C22.45(C22×Dic3) = C42.47D6central stem extension (φ=1)96C2^2.45(C2^2xDic3)192,570
C22.46(C22×Dic3) = C123M4(2)central stem extension (φ=1)96C2^2.46(C2^2xDic3)192,571
C22.47(C22×Dic3) = C42.210D6central stem extension (φ=1)192C2^2.47(C2^2xDic3)192,583
C22.48(C22×Dic3) = C24.6Dic3central stem extension (φ=1)48C2^2.48(C2^2xDic3)192,766
C22.49(C22×Dic3) = C24.74D6central stem extension (φ=1)96C2^2.49(C2^2xDic3)192,770
C22.50(C22×Dic3) = C24.75D6central stem extension (φ=1)96C2^2.50(C2^2xDic3)192,771
C22.51(C22×Dic3) = C24.29D6central stem extension (φ=1)96C2^2.51(C2^2xDic3)192,779
C22.52(C22×Dic3) = C24.30D6central stem extension (φ=1)96C2^2.52(C2^2xDic3)192,780
C22.53(C22×Dic3) = (C6×Q8)⋊7C4central stem extension (φ=1)192C2^2.53(C2^2xDic3)192,788
C22.54(C22×Dic3) = (C6×D4).11C4central stem extension (φ=1)96C2^2.54(C2^2xDic3)192,793
C22.55(C22×Dic3) = C25.4S3central stem extension (φ=1)48C2^2.55(C2^2xDic3)192,806

׿
×
𝔽