direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Dic3×C4○D4, D4⋊7(C2×Dic3), Q8⋊7(C2×Dic3), (Q8×Dic3)⋊33C2, (D4×Dic3)⋊45C2, (C2×D4).252D6, C6.50(C23×C4), (C2×Q8).232D6, C12.99(C22×C4), (C2×C6).312C24, (C22×C4).404D6, (C2×C12).888C23, (C6×D4).274C22, C22.48(S3×C23), (C6×Q8).241C22, C4.21(C22×Dic3), C2.12(C23×Dic3), C23.26D6⋊36C2, C4⋊Dic3.391C22, C23.219(C22×S3), (C22×C6).238C23, C22.3(C22×Dic3), (C22×C12).294C22, (C2×Dic3).291C23, (C4×Dic3).303C22, C6.D4.134C22, (C22×Dic3).235C22, C3⋊5(C4×C4○D4), (C3×C4○D4)⋊5C4, C2.7(S3×C4○D4), (C2×C12)⋊16(C2×C4), (C3×D4)⋊21(C2×C4), (C3×Q8)⋊19(C2×C4), (C2×C4×Dic3)⋊14C2, (C2×C4)⋊8(C2×Dic3), (C2×C4○D4).20S3, (C6×C4○D4).13C2, C6.214(C2×C4○D4), (C2×C6).30(C22×C4), (C2×C4).637(C22×S3), SmallGroup(192,1385)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Dic3×C4○D4
G = < a,b,c,d,e | a6=c4=e2=1, b2=a3, d2=c2, bab-1=a-1, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=c2d >
Subgroups: 552 in 310 conjugacy classes, 195 normal (14 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, Dic3, Dic3, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×Q8, C4○D4, C2×Dic3, C2×Dic3, C2×C12, C2×C12, C3×D4, C3×Q8, C22×C6, C2×C42, C42⋊C2, C4×D4, C4×Q8, C2×C4○D4, C4×Dic3, C4×Dic3, C4⋊Dic3, C6.D4, C22×Dic3, C22×C12, C6×D4, C6×Q8, C3×C4○D4, C4×C4○D4, C2×C4×Dic3, C23.26D6, D4×Dic3, Q8×Dic3, C6×C4○D4, Dic3×C4○D4
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C4○D4, C24, C2×Dic3, C22×S3, C23×C4, C2×C4○D4, C22×Dic3, S3×C23, C4×C4○D4, S3×C4○D4, C23×Dic3, Dic3×C4○D4
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 79 4 82)(2 84 5 81)(3 83 6 80)(7 20 10 23)(8 19 11 22)(9 24 12 21)(13 85 16 88)(14 90 17 87)(15 89 18 86)(25 91 28 94)(26 96 29 93)(27 95 30 92)(31 56 34 59)(32 55 35 58)(33 60 36 57)(37 65 40 62)(38 64 41 61)(39 63 42 66)(43 68 46 71)(44 67 47 70)(45 72 48 69)(49 76 52 73)(50 75 53 78)(51 74 54 77)
(1 40 15 35)(2 41 16 36)(3 42 17 31)(4 37 18 32)(5 38 13 33)(6 39 14 34)(7 67 94 77)(8 68 95 78)(9 69 96 73)(10 70 91 74)(11 71 92 75)(12 72 93 76)(19 46 30 50)(20 47 25 51)(21 48 26 52)(22 43 27 53)(23 44 28 54)(24 45 29 49)(55 82 65 86)(56 83 66 87)(57 84 61 88)(58 79 62 89)(59 80 63 90)(60 81 64 85)
(1 32 15 37)(2 33 16 38)(3 34 17 39)(4 35 18 40)(5 36 13 41)(6 31 14 42)(7 70 94 74)(8 71 95 75)(9 72 96 76)(10 67 91 77)(11 68 92 78)(12 69 93 73)(19 43 30 53)(20 44 25 54)(21 45 26 49)(22 46 27 50)(23 47 28 51)(24 48 29 52)(55 89 65 79)(56 90 66 80)(57 85 61 81)(58 86 62 82)(59 87 63 83)(60 88 64 84)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 86)(8 87)(9 88)(10 89)(11 90)(12 85)(13 24)(14 19)(15 20)(16 21)(17 22)(18 23)(31 43)(32 44)(33 45)(34 46)(35 47)(36 48)(37 54)(38 49)(39 50)(40 51)(41 52)(42 53)(55 67)(56 68)(57 69)(58 70)(59 71)(60 72)(61 73)(62 74)(63 75)(64 76)(65 77)(66 78)(79 91)(80 92)(81 93)(82 94)(83 95)(84 96)
G:=sub<Sym(96)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,79,4,82)(2,84,5,81)(3,83,6,80)(7,20,10,23)(8,19,11,22)(9,24,12,21)(13,85,16,88)(14,90,17,87)(15,89,18,86)(25,91,28,94)(26,96,29,93)(27,95,30,92)(31,56,34,59)(32,55,35,58)(33,60,36,57)(37,65,40,62)(38,64,41,61)(39,63,42,66)(43,68,46,71)(44,67,47,70)(45,72,48,69)(49,76,52,73)(50,75,53,78)(51,74,54,77), (1,40,15,35)(2,41,16,36)(3,42,17,31)(4,37,18,32)(5,38,13,33)(6,39,14,34)(7,67,94,77)(8,68,95,78)(9,69,96,73)(10,70,91,74)(11,71,92,75)(12,72,93,76)(19,46,30,50)(20,47,25,51)(21,48,26,52)(22,43,27,53)(23,44,28,54)(24,45,29,49)(55,82,65,86)(56,83,66,87)(57,84,61,88)(58,79,62,89)(59,80,63,90)(60,81,64,85), (1,32,15,37)(2,33,16,38)(3,34,17,39)(4,35,18,40)(5,36,13,41)(6,31,14,42)(7,70,94,74)(8,71,95,75)(9,72,96,76)(10,67,91,77)(11,68,92,78)(12,69,93,73)(19,43,30,53)(20,44,25,54)(21,45,26,49)(22,46,27,50)(23,47,28,51)(24,48,29,52)(55,89,65,79)(56,90,66,80)(57,85,61,81)(58,86,62,82)(59,87,63,83)(60,88,64,84), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,86)(8,87)(9,88)(10,89)(11,90)(12,85)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,54)(38,49)(39,50)(40,51)(41,52)(42,53)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96)>;
G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,79,4,82)(2,84,5,81)(3,83,6,80)(7,20,10,23)(8,19,11,22)(9,24,12,21)(13,85,16,88)(14,90,17,87)(15,89,18,86)(25,91,28,94)(26,96,29,93)(27,95,30,92)(31,56,34,59)(32,55,35,58)(33,60,36,57)(37,65,40,62)(38,64,41,61)(39,63,42,66)(43,68,46,71)(44,67,47,70)(45,72,48,69)(49,76,52,73)(50,75,53,78)(51,74,54,77), (1,40,15,35)(2,41,16,36)(3,42,17,31)(4,37,18,32)(5,38,13,33)(6,39,14,34)(7,67,94,77)(8,68,95,78)(9,69,96,73)(10,70,91,74)(11,71,92,75)(12,72,93,76)(19,46,30,50)(20,47,25,51)(21,48,26,52)(22,43,27,53)(23,44,28,54)(24,45,29,49)(55,82,65,86)(56,83,66,87)(57,84,61,88)(58,79,62,89)(59,80,63,90)(60,81,64,85), (1,32,15,37)(2,33,16,38)(3,34,17,39)(4,35,18,40)(5,36,13,41)(6,31,14,42)(7,70,94,74)(8,71,95,75)(9,72,96,76)(10,67,91,77)(11,68,92,78)(12,69,93,73)(19,43,30,53)(20,44,25,54)(21,45,26,49)(22,46,27,50)(23,47,28,51)(24,48,29,52)(55,89,65,79)(56,90,66,80)(57,85,61,81)(58,86,62,82)(59,87,63,83)(60,88,64,84), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,86)(8,87)(9,88)(10,89)(11,90)(12,85)(13,24)(14,19)(15,20)(16,21)(17,22)(18,23)(31,43)(32,44)(33,45)(34,46)(35,47)(36,48)(37,54)(38,49)(39,50)(40,51)(41,52)(42,53)(55,67)(56,68)(57,69)(58,70)(59,71)(60,72)(61,73)(62,74)(63,75)(64,76)(65,77)(66,78)(79,91)(80,92)(81,93)(82,94)(83,95)(84,96) );
G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,79,4,82),(2,84,5,81),(3,83,6,80),(7,20,10,23),(8,19,11,22),(9,24,12,21),(13,85,16,88),(14,90,17,87),(15,89,18,86),(25,91,28,94),(26,96,29,93),(27,95,30,92),(31,56,34,59),(32,55,35,58),(33,60,36,57),(37,65,40,62),(38,64,41,61),(39,63,42,66),(43,68,46,71),(44,67,47,70),(45,72,48,69),(49,76,52,73),(50,75,53,78),(51,74,54,77)], [(1,40,15,35),(2,41,16,36),(3,42,17,31),(4,37,18,32),(5,38,13,33),(6,39,14,34),(7,67,94,77),(8,68,95,78),(9,69,96,73),(10,70,91,74),(11,71,92,75),(12,72,93,76),(19,46,30,50),(20,47,25,51),(21,48,26,52),(22,43,27,53),(23,44,28,54),(24,45,29,49),(55,82,65,86),(56,83,66,87),(57,84,61,88),(58,79,62,89),(59,80,63,90),(60,81,64,85)], [(1,32,15,37),(2,33,16,38),(3,34,17,39),(4,35,18,40),(5,36,13,41),(6,31,14,42),(7,70,94,74),(8,71,95,75),(9,72,96,76),(10,67,91,77),(11,68,92,78),(12,69,93,73),(19,43,30,53),(20,44,25,54),(21,45,26,49),(22,46,27,50),(23,47,28,51),(24,48,29,52),(55,89,65,79),(56,90,66,80),(57,85,61,81),(58,86,62,82),(59,87,63,83),(60,88,64,84)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,86),(8,87),(9,88),(10,89),(11,90),(12,85),(13,24),(14,19),(15,20),(16,21),(17,22),(18,23),(31,43),(32,44),(33,45),(34,46),(35,47),(36,48),(37,54),(38,49),(39,50),(40,51),(41,52),(42,53),(55,67),(56,68),(57,69),(58,70),(59,71),(60,72),(61,73),(62,74),(63,75),(64,76),(65,77),(66,78),(79,91),(80,92),(81,93),(82,94),(83,95),(84,96)]])
60 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 3 | 4A | 4B | 4C | 4D | 4E | ··· | 4J | 4K | ··· | 4R | 4S | ··· | 4AD | 6A | 6B | 6C | 6D | ··· | 6I | 12A | 12B | 12C | 12D | 12E | ··· | 12J |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | ··· | 4 | 6 | 6 | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 3 | ··· | 3 | 6 | ··· | 6 | 2 | 2 | 2 | 4 | ··· | 4 | 2 | 2 | 2 | 2 | 4 | ··· | 4 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C4 | S3 | D6 | D6 | D6 | Dic3 | C4○D4 | S3×C4○D4 |
kernel | Dic3×C4○D4 | C2×C4×Dic3 | C23.26D6 | D4×Dic3 | Q8×Dic3 | C6×C4○D4 | C3×C4○D4 | C2×C4○D4 | C22×C4 | C2×D4 | C2×Q8 | C4○D4 | Dic3 | C2 |
# reps | 1 | 3 | 3 | 6 | 2 | 1 | 16 | 1 | 3 | 3 | 1 | 8 | 8 | 4 |
Matrix representation of Dic3×C4○D4 ►in GL5(𝔽13)
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 3 | 9 |
8 | 0 | 0 | 0 | 0 |
0 | 8 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 12 | 11 |
0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 |
0 | 0 | 5 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 5 | 8 | 0 | 0 |
0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 11 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
G:=sub<GL(5,GF(13))| [12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,3,3,0,0,0,0,9],[8,0,0,0,0,0,8,0,0,0,0,0,8,0,0,0,0,0,12,0,0,0,0,11,1],[1,0,0,0,0,0,5,0,0,0,0,0,5,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,5,0,0,0,0,8,8,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,12,11,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1] >;
Dic3×C4○D4 in GAP, Magma, Sage, TeX
{\rm Dic}_3\times C_4\circ D_4
% in TeX
G:=Group("Dic3xC4oD4");
// GroupNames label
G:=SmallGroup(192,1385);
// by ID
G=gap.SmallGroup(192,1385);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,184,570,6278]);
// Polycyclic
G:=Group<a,b,c,d,e|a^6=c^4=e^2=1,b^2=a^3,d^2=c^2,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=c^2*d>;
// generators/relations