Copied to
clipboard

G = C123M4(2)  order 192 = 26·3

3rd semidirect product of C12 and M4(2) acting via M4(2)/C4=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C123M4(2), C42.206D6, C3⋊C818D4, C34(C86D4), (C6×D4).9C4, (C4×D4).6S3, C6.92(C4×D4), (D4×C12).7C2, C12⋊C822C2, C4.216(S3×D4), C4⋊C4.8Dic3, C2.9(D4×Dic3), C6.40(C8○D4), C12.375(C2×D4), C41(C4.Dic3), (C2×D4).6Dic3, C12.55D43C2, (C4×C12).83C22, (C22×C4).131D6, C6.41(C2×M4(2)), C22⋊C4.5Dic3, C12.308(C4○D4), (C2×C12).850C23, C2.7(D4.Dic3), C4.135(D42S3), C23.14(C2×Dic3), (C22×C12).100C22, C22.46(C22×Dic3), (C4×C3⋊C8)⋊7C2, (C3×C4⋊C4).12C4, (C3×C22⋊C4).6C4, (C2×C4.Dic3)⋊5C2, (C2×C12).164(C2×C4), C2.9(C2×C4.Dic3), (C2×C3⋊C8).201C22, (C22×C6).61(C2×C4), (C2×C4).20(C2×Dic3), (C2×C4).792(C22×S3), (C2×C6).187(C22×C4), SmallGroup(192,571)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C123M4(2)
C1C3C6C12C2×C12C2×C3⋊C8C2×C4.Dic3 — C123M4(2)
C3C2×C6 — C123M4(2)
C1C2×C4C4×D4

Generators and relations for C123M4(2)
 G = < a,b,c | a12=b8=c2=1, bab-1=a-1, cac=a7, cbc=b5 >

Subgroups: 232 in 122 conjugacy classes, 61 normal (33 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, D4, C23, C12, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C2×D4, C3⋊C8, C3⋊C8, C2×C12, C2×C12, C2×C12, C3×D4, C22×C6, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C2×M4(2), C2×C3⋊C8, C2×C3⋊C8, C4.Dic3, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C22×C12, C6×D4, C86D4, C4×C3⋊C8, C12⋊C8, C12.55D4, C2×C4.Dic3, D4×C12, C123M4(2)
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, M4(2), C22×C4, C2×D4, C4○D4, C2×Dic3, C22×S3, C4×D4, C2×M4(2), C8○D4, C4.Dic3, S3×D4, D42S3, C22×Dic3, C86D4, C2×C4.Dic3, D4×Dic3, D4.Dic3, C123M4(2)

Smallest permutation representation of C123M4(2)
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 57 24 67 92 39 81 27)(2 56 13 66 93 38 82 26)(3 55 14 65 94 37 83 25)(4 54 15 64 95 48 84 36)(5 53 16 63 96 47 73 35)(6 52 17 62 85 46 74 34)(7 51 18 61 86 45 75 33)(8 50 19 72 87 44 76 32)(9 49 20 71 88 43 77 31)(10 60 21 70 89 42 78 30)(11 59 22 69 90 41 79 29)(12 58 23 68 91 40 80 28)
(1 89)(2 96)(3 91)(4 86)(5 93)(6 88)(7 95)(8 90)(9 85)(10 92)(11 87)(12 94)(13 73)(14 80)(15 75)(16 82)(17 77)(18 84)(19 79)(20 74)(21 81)(22 76)(23 83)(24 78)(25 28)(26 35)(27 30)(29 32)(31 34)(33 36)(37 40)(38 47)(39 42)(41 44)(43 46)(45 48)(49 52)(50 59)(51 54)(53 56)(55 58)(57 60)(61 64)(62 71)(63 66)(65 68)(67 70)(69 72)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,57,24,67,92,39,81,27)(2,56,13,66,93,38,82,26)(3,55,14,65,94,37,83,25)(4,54,15,64,95,48,84,36)(5,53,16,63,96,47,73,35)(6,52,17,62,85,46,74,34)(7,51,18,61,86,45,75,33)(8,50,19,72,87,44,76,32)(9,49,20,71,88,43,77,31)(10,60,21,70,89,42,78,30)(11,59,22,69,90,41,79,29)(12,58,23,68,91,40,80,28), (1,89)(2,96)(3,91)(4,86)(5,93)(6,88)(7,95)(8,90)(9,85)(10,92)(11,87)(12,94)(13,73)(14,80)(15,75)(16,82)(17,77)(18,84)(19,79)(20,74)(21,81)(22,76)(23,83)(24,78)(25,28)(26,35)(27,30)(29,32)(31,34)(33,36)(37,40)(38,47)(39,42)(41,44)(43,46)(45,48)(49,52)(50,59)(51,54)(53,56)(55,58)(57,60)(61,64)(62,71)(63,66)(65,68)(67,70)(69,72)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,57,24,67,92,39,81,27)(2,56,13,66,93,38,82,26)(3,55,14,65,94,37,83,25)(4,54,15,64,95,48,84,36)(5,53,16,63,96,47,73,35)(6,52,17,62,85,46,74,34)(7,51,18,61,86,45,75,33)(8,50,19,72,87,44,76,32)(9,49,20,71,88,43,77,31)(10,60,21,70,89,42,78,30)(11,59,22,69,90,41,79,29)(12,58,23,68,91,40,80,28), (1,89)(2,96)(3,91)(4,86)(5,93)(6,88)(7,95)(8,90)(9,85)(10,92)(11,87)(12,94)(13,73)(14,80)(15,75)(16,82)(17,77)(18,84)(19,79)(20,74)(21,81)(22,76)(23,83)(24,78)(25,28)(26,35)(27,30)(29,32)(31,34)(33,36)(37,40)(38,47)(39,42)(41,44)(43,46)(45,48)(49,52)(50,59)(51,54)(53,56)(55,58)(57,60)(61,64)(62,71)(63,66)(65,68)(67,70)(69,72) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,57,24,67,92,39,81,27),(2,56,13,66,93,38,82,26),(3,55,14,65,94,37,83,25),(4,54,15,64,95,48,84,36),(5,53,16,63,96,47,73,35),(6,52,17,62,85,46,74,34),(7,51,18,61,86,45,75,33),(8,50,19,72,87,44,76,32),(9,49,20,71,88,43,77,31),(10,60,21,70,89,42,78,30),(11,59,22,69,90,41,79,29),(12,58,23,68,91,40,80,28)], [(1,89),(2,96),(3,91),(4,86),(5,93),(6,88),(7,95),(8,90),(9,85),(10,92),(11,87),(12,94),(13,73),(14,80),(15,75),(16,82),(17,77),(18,84),(19,79),(20,74),(21,81),(22,76),(23,83),(24,78),(25,28),(26,35),(27,30),(29,32),(31,34),(33,36),(37,40),(38,47),(39,42),(41,44),(43,46),(45,48),(49,52),(50,59),(51,54),(53,56),(55,58),(57,60),(61,64),(62,71),(63,66),(65,68),(67,70),(69,72)]])

48 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J6A6B6C6D6E6F6G8A···8H8I8J8K8L12A12B12C12D12E···12L
order1222223444444444466666668···888881212121212···12
size1111442111122224422244446···61212121222224···4

48 irreducible representations

dim11111111122222222222444
type+++++++++--+-+-
imageC1C2C2C2C2C2C4C4C4S3D4D6Dic3Dic3D6Dic3M4(2)C4○D4C8○D4C4.Dic3S3×D4D42S3D4.Dic3
kernelC123M4(2)C4×C3⋊C8C12⋊C8C12.55D4C2×C4.Dic3D4×C12C3×C22⋊C4C3×C4⋊C4C6×D4C4×D4C3⋊C8C42C22⋊C4C4⋊C4C22×C4C2×D4C12C12C6C4C4C4C2
# reps11122142212121214248112

Matrix representation of C123M4(2) in GL4(𝔽73) generated by

83700
06400
00131
00772
,
705600
29300
004639
00027
,
723000
0100
007242
0001
G:=sub<GL(4,GF(73))| [8,0,0,0,37,64,0,0,0,0,1,7,0,0,31,72],[70,29,0,0,56,3,0,0,0,0,46,0,0,0,39,27],[72,0,0,0,30,1,0,0,0,0,72,0,0,0,42,1] >;

C123M4(2) in GAP, Magma, Sage, TeX

C_{12}\rtimes_3M_4(2)
% in TeX

G:=Group("C12:3M4(2)");
// GroupNames label

G:=SmallGroup(192,571);
// by ID

G=gap.SmallGroup(192,571);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,477,758,219,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^12=b^8=c^2=1,b*a*b^-1=a^-1,c*a*c=a^7,c*b*c=b^5>;
// generators/relations

׿
×
𝔽