Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C3⋊Q16

Direct product G=N×Q with N=C2 and Q=C2×C3⋊Q16
dρLabelID
C22×C3⋊Q16192C2^2xC3:Q16192,1368


Non-split extensions G=N.Q with N=C2 and Q=C2×C3⋊Q16
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C3⋊Q16) = C2×C6.Q16central extension (φ=1)192C2.1(C2xC3:Q16)192,521
C2.2(C2×C3⋊Q16) = C2×C6.SD16central extension (φ=1)192C2.2(C2xC3:Q16)192,528
C2.3(C2×C3⋊Q16) = C4×C3⋊Q16central extension (φ=1)192C2.3(C2xC3:Q16)192,588
C2.4(C2×C3⋊Q16) = C2×Q82Dic3central extension (φ=1)192C2.4(C2xC3:Q16)192,783
C2.5(C2×C3⋊Q16) = C4⋊C4.230D6central stem extension (φ=1)96C2.5(C2xC3:Q16)192,529
C2.6(C2×C3⋊Q16) = Q85Dic6central stem extension (φ=1)192C2.6(C2xC3:Q16)192,580
C2.7(C2×C3⋊Q16) = C127Q16central stem extension (φ=1)192C2.7(C2xC3:Q16)192,590
C2.8(C2×C3⋊Q16) = (C2×C6).Q16central stem extension (φ=1)96C2.8(C2xC3:Q16)192,603
C2.9(C2×C3⋊Q16) = Dic6.37D4central stem extension (φ=1)96C2.9(C2xC3:Q16)192,609
C2.10(C2×C3⋊Q16) = C3⋊C8.29D4central stem extension (φ=1)96C2.10(C2xC3:Q16)192,610
C2.11(C2×C3⋊Q16) = C12.17D8central stem extension (φ=1)192C2.11(C2xC3:Q16)192,637
C2.12(C2×C3⋊Q16) = C12.9Q16central stem extension (φ=1)192C2.12(C2xC3:Q16)192,638
C2.13(C2×C3⋊Q16) = C12⋊Q16central stem extension (φ=1)192C2.13(C2xC3:Q16)192,649
C2.14(C2×C3⋊Q16) = Dic65Q8central stem extension (φ=1)192C2.14(C2xC3:Q16)192,650
C2.15(C2×C3⋊Q16) = C123Q16central stem extension (φ=1)192C2.15(C2xC3:Q16)192,651
C2.16(C2×C3⋊Q16) = C12.Q16central stem extension (φ=1)192C2.16(C2xC3:Q16)192,652
C2.17(C2×C3⋊Q16) = (C2×C6)⋊8Q16central stem extension (φ=1)96C2.17(C2xC3:Q16)192,787

׿
×
𝔽