direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C3⋊Q16, C6⋊2Q16, C12.20D4, Q8.12D6, C12.16C23, Dic6.10C22, C3⋊3(C2×Q16), C6.55(C2×D4), (C2×C4).54D6, (C2×C6).43D4, C3⋊C8.9C22, (C6×Q8).3C2, (C2×Q8).5S3, C4.9(C3⋊D4), C4.16(C22×S3), (C2×Dic6).8C2, (C3×Q8).7C22, (C2×C12).38C22, C22.24(C3⋊D4), (C2×C3⋊C8).6C2, C2.19(C2×C3⋊D4), SmallGroup(96,150)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C3⋊Q16
G = < a,b,c,d | a2=b3=c8=1, d2=c4, ab=ba, ac=ca, ad=da, cbc-1=b-1, bd=db, dcd-1=c-1 >
Subgroups: 114 in 60 conjugacy classes, 33 normal (17 characteristic)
C1, C2, C2, C3, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, Q8, Q8, Dic3, C12, C12, C2×C6, C2×C8, Q16, C2×Q8, C2×Q8, C3⋊C8, Dic6, Dic6, C2×Dic3, C2×C12, C2×C12, C3×Q8, C3×Q8, C2×Q16, C2×C3⋊C8, C3⋊Q16, C2×Dic6, C6×Q8, C2×C3⋊Q16
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2×D4, C3⋊D4, C22×S3, C2×Q16, C3⋊Q16, C2×C3⋊D4, C2×C3⋊Q16
Character table of C2×C3⋊Q16
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 12 | 12 | 2 | 2 | 2 | 6 | 6 | 6 | 6 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | linear of order 2 |
ρ7 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ10 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | -2 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | -2 | 2 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ12 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | 2 | -2 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | -1 | -1 | 1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ13 | 2 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | -2 | -2 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | -1 | 1 | 1 | 1 | 1 | -1 | orthogonal lifted from D6 |
ρ15 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | √2 | -√2 | √2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ16 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | -√2 | -√2 | √2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ17 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | 2 | -√2 | √2 | -√2 | √2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ18 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | √2 | √2 | -√2 | -√2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q16, Schur index 2 |
ρ19 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | √-3 | -√-3 | -√-3 | √-3 | 1 | complex lifted from C3⋊D4 |
ρ20 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | 0 | 0 | 0 | 1 | -√-3 | √-3 | √-3 | -√-3 | 1 | complex lifted from C3⋊D4 |
ρ21 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | -√-3 | -√-3 | √-3 | √-3 | -1 | complex lifted from C3⋊D4 |
ρ22 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | 1 | -1 | 1 | 0 | 0 | 0 | 0 | 1 | √-3 | √-3 | -√-3 | -√-3 | -1 | complex lifted from C3⋊D4 |
ρ23 | 4 | -4 | -4 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C3⋊Q16, Schur index 2 |
ρ24 | 4 | -4 | 4 | -4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C3⋊Q16, Schur index 2 |
(1 15)(2 16)(3 9)(4 10)(5 11)(6 12)(7 13)(8 14)(17 37)(18 38)(19 39)(20 40)(21 33)(22 34)(23 35)(24 36)(25 51)(26 52)(27 53)(28 54)(29 55)(30 56)(31 49)(32 50)(41 77)(42 78)(43 79)(44 80)(45 73)(46 74)(47 75)(48 76)(57 83)(58 84)(59 85)(60 86)(61 87)(62 88)(63 81)(64 82)(65 94)(66 95)(67 96)(68 89)(69 90)(70 91)(71 92)(72 93)
(1 17 91)(2 92 18)(3 19 93)(4 94 20)(5 21 95)(6 96 22)(7 23 89)(8 90 24)(9 39 72)(10 65 40)(11 33 66)(12 67 34)(13 35 68)(14 69 36)(15 37 70)(16 71 38)(25 57 73)(26 74 58)(27 59 75)(28 76 60)(29 61 77)(30 78 62)(31 63 79)(32 80 64)(41 55 87)(42 88 56)(43 49 81)(44 82 50)(45 51 83)(46 84 52)(47 53 85)(48 86 54)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)(65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96)
(1 80 5 76)(2 79 6 75)(3 78 7 74)(4 77 8 73)(9 42 13 46)(10 41 14 45)(11 48 15 44)(12 47 16 43)(17 64 21 60)(18 63 22 59)(19 62 23 58)(20 61 24 57)(25 94 29 90)(26 93 30 89)(27 92 31 96)(28 91 32 95)(33 86 37 82)(34 85 38 81)(35 84 39 88)(36 83 40 87)(49 67 53 71)(50 66 54 70)(51 65 55 69)(52 72 56 68)
G:=sub<Sym(96)| (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,49)(32,50)(41,77)(42,78)(43,79)(44,80)(45,73)(46,74)(47,75)(48,76)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,81)(64,82)(65,94)(66,95)(67,96)(68,89)(69,90)(70,91)(71,92)(72,93), (1,17,91)(2,92,18)(3,19,93)(4,94,20)(5,21,95)(6,96,22)(7,23,89)(8,90,24)(9,39,72)(10,65,40)(11,33,66)(12,67,34)(13,35,68)(14,69,36)(15,37,70)(16,71,38)(25,57,73)(26,74,58)(27,59,75)(28,76,60)(29,61,77)(30,78,62)(31,63,79)(32,80,64)(41,55,87)(42,88,56)(43,49,81)(44,82,50)(45,51,83)(46,84,52)(47,53,85)(48,86,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,80,5,76)(2,79,6,75)(3,78,7,74)(4,77,8,73)(9,42,13,46)(10,41,14,45)(11,48,15,44)(12,47,16,43)(17,64,21,60)(18,63,22,59)(19,62,23,58)(20,61,24,57)(25,94,29,90)(26,93,30,89)(27,92,31,96)(28,91,32,95)(33,86,37,82)(34,85,38,81)(35,84,39,88)(36,83,40,87)(49,67,53,71)(50,66,54,70)(51,65,55,69)(52,72,56,68)>;
G:=Group( (1,15)(2,16)(3,9)(4,10)(5,11)(6,12)(7,13)(8,14)(17,37)(18,38)(19,39)(20,40)(21,33)(22,34)(23,35)(24,36)(25,51)(26,52)(27,53)(28,54)(29,55)(30,56)(31,49)(32,50)(41,77)(42,78)(43,79)(44,80)(45,73)(46,74)(47,75)(48,76)(57,83)(58,84)(59,85)(60,86)(61,87)(62,88)(63,81)(64,82)(65,94)(66,95)(67,96)(68,89)(69,90)(70,91)(71,92)(72,93), (1,17,91)(2,92,18)(3,19,93)(4,94,20)(5,21,95)(6,96,22)(7,23,89)(8,90,24)(9,39,72)(10,65,40)(11,33,66)(12,67,34)(13,35,68)(14,69,36)(15,37,70)(16,71,38)(25,57,73)(26,74,58)(27,59,75)(28,76,60)(29,61,77)(30,78,62)(31,63,79)(32,80,64)(41,55,87)(42,88,56)(43,49,81)(44,82,50)(45,51,83)(46,84,52)(47,53,85)(48,86,54), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64)(65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96), (1,80,5,76)(2,79,6,75)(3,78,7,74)(4,77,8,73)(9,42,13,46)(10,41,14,45)(11,48,15,44)(12,47,16,43)(17,64,21,60)(18,63,22,59)(19,62,23,58)(20,61,24,57)(25,94,29,90)(26,93,30,89)(27,92,31,96)(28,91,32,95)(33,86,37,82)(34,85,38,81)(35,84,39,88)(36,83,40,87)(49,67,53,71)(50,66,54,70)(51,65,55,69)(52,72,56,68) );
G=PermutationGroup([[(1,15),(2,16),(3,9),(4,10),(5,11),(6,12),(7,13),(8,14),(17,37),(18,38),(19,39),(20,40),(21,33),(22,34),(23,35),(24,36),(25,51),(26,52),(27,53),(28,54),(29,55),(30,56),(31,49),(32,50),(41,77),(42,78),(43,79),(44,80),(45,73),(46,74),(47,75),(48,76),(57,83),(58,84),(59,85),(60,86),(61,87),(62,88),(63,81),(64,82),(65,94),(66,95),(67,96),(68,89),(69,90),(70,91),(71,92),(72,93)], [(1,17,91),(2,92,18),(3,19,93),(4,94,20),(5,21,95),(6,96,22),(7,23,89),(8,90,24),(9,39,72),(10,65,40),(11,33,66),(12,67,34),(13,35,68),(14,69,36),(15,37,70),(16,71,38),(25,57,73),(26,74,58),(27,59,75),(28,76,60),(29,61,77),(30,78,62),(31,63,79),(32,80,64),(41,55,87),(42,88,56),(43,49,81),(44,82,50),(45,51,83),(46,84,52),(47,53,85),(48,86,54)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64),(65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96)], [(1,80,5,76),(2,79,6,75),(3,78,7,74),(4,77,8,73),(9,42,13,46),(10,41,14,45),(11,48,15,44),(12,47,16,43),(17,64,21,60),(18,63,22,59),(19,62,23,58),(20,61,24,57),(25,94,29,90),(26,93,30,89),(27,92,31,96),(28,91,32,95),(33,86,37,82),(34,85,38,81),(35,84,39,88),(36,83,40,87),(49,67,53,71),(50,66,54,70),(51,65,55,69),(52,72,56,68)]])
C2×C3⋊Q16 is a maximal subgroup of
D12.7D4 C3⋊Q16⋊C4 Dic3⋊4Q16 Dic3⋊Q16 Dic6.11D4 Q8.11D12 D6⋊Q16 D6⋊1Q16 C3⋊C8.D4 Q8.6D12 C42.59D6 C12⋊7Q16 D12.37D4 Dic6.37D4 C3⋊C8.29D4 C3⋊C8.6D4 C42.61D6 C42.214D6 C42.65D6 C42.80D6 C12⋊Q16 C12⋊3Q16 (C3×Q8).D4 C24.31D4 C24.43D4 Dic6.16D4 Dic3⋊3Q16 C24.26D4 D6⋊5Q16 C24.37D4 M4(2).16D6 (C2×C6)⋊8Q16 (C3×D4).32D4 C2×S3×Q16 SD16.D6 D12.35C23
C2×C3⋊Q16 is a maximal quotient of
C4⋊C4.230D6 Q8⋊5Dic6 C12⋊7Q16 (C2×C6).Q16 Dic6.37D4 C3⋊C8.29D4 C12.17D8 C12.9Q16 C12⋊Q16 Dic6⋊5Q8 C12⋊3Q16 C12.Q16 (C2×C6)⋊8Q16
Matrix representation of C2×C3⋊Q16 ►in GL4(𝔽73) generated by
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
0 | 0 | 72 | 0 |
0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 0 | 72 |
0 | 0 | 1 | 72 |
16 | 57 | 0 | 0 |
16 | 16 | 0 | 0 |
0 | 0 | 26 | 39 |
0 | 0 | 65 | 47 |
12 | 72 | 0 | 0 |
72 | 61 | 0 | 0 |
0 | 0 | 43 | 60 |
0 | 0 | 13 | 30 |
G:=sub<GL(4,GF(73))| [72,0,0,0,0,72,0,0,0,0,72,0,0,0,0,72],[1,0,0,0,0,1,0,0,0,0,0,1,0,0,72,72],[16,16,0,0,57,16,0,0,0,0,26,65,0,0,39,47],[12,72,0,0,72,61,0,0,0,0,43,13,0,0,60,30] >;
C2×C3⋊Q16 in GAP, Magma, Sage, TeX
C_2\times C_3\rtimes Q_{16}
% in TeX
G:=Group("C2xC3:Q16");
// GroupNames label
G:=SmallGroup(96,150);
// by ID
G=gap.SmallGroup(96,150);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,96,218,86,579,159,69,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^3=c^8=1,d^2=c^4,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c^-1=b^-1,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export