Copied to
clipboard

G = Dic6.37D4order 192 = 26·3

7th non-split extension by Dic6 of D4 acting via D4/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: Dic6.37D4, (C2xC6):2Q16, C4:C4.69D6, C4.103(S3xD4), (C2xC12).79D4, (C2xQ8).55D6, C6.38(C2xQ16), C22:Q8.5S3, C6.49C22wrC2, C12.156(C2xD4), C3:3(C22:Q16), (C22xC6).96D4, C6.SD16:38C2, (C22xC4).146D6, C22:3(C3:Q16), (C6xQ8).49C22, C2.17(C23:2D6), (C2xC12).369C23, C12.55D4.9C2, C23.70(C3:D4), C2.15(Q8.14D6), C6.117(C8.C22), (C22xDic6).13C2, (C22xC12).173C22, (C2xDic6).271C22, (C2xC3:Q16):9C2, C2.9(C2xC3:Q16), (C2xC6).500(C2xD4), (C3xC22:Q8).4C2, (C2xC4).57(C3:D4), (C2xC3:C8).117C22, (C3xC4:C4).116C22, (C2xC4).469(C22xS3), C22.175(C2xC3:D4), SmallGroup(192,609)

Series: Derived Chief Lower central Upper central

C1C2xC12 — Dic6.37D4
C1C3C6C12C2xC12C2xDic6C22xDic6 — Dic6.37D4
C3C6C2xC12 — Dic6.37D4
C1C22C22xC4C22:Q8

Generators and relations for Dic6.37D4
 G = < a,b,c,d | a12=c4=d2=1, b2=a6, bab-1=a-1, cac-1=a7, ad=da, cbc-1=a9b, bd=db, dcd=a6c-1 >

Subgroups: 384 in 148 conjugacy classes, 47 normal (27 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C8, C2xC4, C2xC4, Q8, C23, Dic3, C12, C12, C2xC6, C2xC6, C2xC6, C22:C4, C4:C4, C4:C4, C2xC8, Q16, C22xC4, C22xC4, C2xQ8, C2xQ8, C3:C8, Dic6, Dic6, C2xDic3, C2xC12, C2xC12, C3xQ8, C22xC6, C22:C8, Q8:C4, C22:Q8, C2xQ16, C22xQ8, C2xC3:C8, C3:Q16, C3xC22:C4, C3xC4:C4, C3xC4:C4, C2xDic6, C2xDic6, C22xDic3, C22xC12, C6xQ8, C22:Q16, C6.SD16, C12.55D4, C2xC3:Q16, C3xC22:Q8, C22xDic6, Dic6.37D4
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2xD4, C3:D4, C22xS3, C22wrC2, C2xQ16, C8.C22, C3:Q16, S3xD4, C2xC3:D4, C22:Q16, C23:2D6, C2xC3:Q16, Q8.14D6, Dic6.37D4

Smallest permutation representation of Dic6.37D4
On 96 points
Generators in S96
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 75 7 81)(2 74 8 80)(3 73 9 79)(4 84 10 78)(5 83 11 77)(6 82 12 76)(13 34 19 28)(14 33 20 27)(15 32 21 26)(16 31 22 25)(17 30 23 36)(18 29 24 35)(37 55 43 49)(38 54 44 60)(39 53 45 59)(40 52 46 58)(41 51 47 57)(42 50 48 56)(61 91 67 85)(62 90 68 96)(63 89 69 95)(64 88 70 94)(65 87 71 93)(66 86 72 92)
(1 31 90 38)(2 26 91 45)(3 33 92 40)(4 28 93 47)(5 35 94 42)(6 30 95 37)(7 25 96 44)(8 32 85 39)(9 27 86 46)(10 34 87 41)(11 29 88 48)(12 36 89 43)(13 68 57 75)(14 63 58 82)(15 70 59 77)(16 65 60 84)(17 72 49 79)(18 67 50 74)(19 62 51 81)(20 69 52 76)(21 64 53 83)(22 71 54 78)(23 66 55 73)(24 61 56 80)
(13 51)(14 52)(15 53)(16 54)(17 55)(18 56)(19 57)(20 58)(21 59)(22 60)(23 49)(24 50)(25 38)(26 39)(27 40)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 37)

G:=sub<Sym(96)| (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,75,7,81)(2,74,8,80)(3,73,9,79)(4,84,10,78)(5,83,11,77)(6,82,12,76)(13,34,19,28)(14,33,20,27)(15,32,21,26)(16,31,22,25)(17,30,23,36)(18,29,24,35)(37,55,43,49)(38,54,44,60)(39,53,45,59)(40,52,46,58)(41,51,47,57)(42,50,48,56)(61,91,67,85)(62,90,68,96)(63,89,69,95)(64,88,70,94)(65,87,71,93)(66,86,72,92), (1,31,90,38)(2,26,91,45)(3,33,92,40)(4,28,93,47)(5,35,94,42)(6,30,95,37)(7,25,96,44)(8,32,85,39)(9,27,86,46)(10,34,87,41)(11,29,88,48)(12,36,89,43)(13,68,57,75)(14,63,58,82)(15,70,59,77)(16,65,60,84)(17,72,49,79)(18,67,50,74)(19,62,51,81)(20,69,52,76)(21,64,53,83)(22,71,54,78)(23,66,55,73)(24,61,56,80), (13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,49)(24,50)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,37)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,75,7,81)(2,74,8,80)(3,73,9,79)(4,84,10,78)(5,83,11,77)(6,82,12,76)(13,34,19,28)(14,33,20,27)(15,32,21,26)(16,31,22,25)(17,30,23,36)(18,29,24,35)(37,55,43,49)(38,54,44,60)(39,53,45,59)(40,52,46,58)(41,51,47,57)(42,50,48,56)(61,91,67,85)(62,90,68,96)(63,89,69,95)(64,88,70,94)(65,87,71,93)(66,86,72,92), (1,31,90,38)(2,26,91,45)(3,33,92,40)(4,28,93,47)(5,35,94,42)(6,30,95,37)(7,25,96,44)(8,32,85,39)(9,27,86,46)(10,34,87,41)(11,29,88,48)(12,36,89,43)(13,68,57,75)(14,63,58,82)(15,70,59,77)(16,65,60,84)(17,72,49,79)(18,67,50,74)(19,62,51,81)(20,69,52,76)(21,64,53,83)(22,71,54,78)(23,66,55,73)(24,61,56,80), (13,51)(14,52)(15,53)(16,54)(17,55)(18,56)(19,57)(20,58)(21,59)(22,60)(23,49)(24,50)(25,38)(26,39)(27,40)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,37) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,75,7,81),(2,74,8,80),(3,73,9,79),(4,84,10,78),(5,83,11,77),(6,82,12,76),(13,34,19,28),(14,33,20,27),(15,32,21,26),(16,31,22,25),(17,30,23,36),(18,29,24,35),(37,55,43,49),(38,54,44,60),(39,53,45,59),(40,52,46,58),(41,51,47,57),(42,50,48,56),(61,91,67,85),(62,90,68,96),(63,89,69,95),(64,88,70,94),(65,87,71,93),(66,86,72,92)], [(1,31,90,38),(2,26,91,45),(3,33,92,40),(4,28,93,47),(5,35,94,42),(6,30,95,37),(7,25,96,44),(8,32,85,39),(9,27,86,46),(10,34,87,41),(11,29,88,48),(12,36,89,43),(13,68,57,75),(14,63,58,82),(15,70,59,77),(16,65,60,84),(17,72,49,79),(18,67,50,74),(19,62,51,81),(20,69,52,76),(21,64,53,83),(22,71,54,78),(23,66,55,73),(24,61,56,80)], [(13,51),(14,52),(15,53),(16,54),(17,55),(18,56),(19,57),(20,58),(21,59),(22,60),(23,49),(24,50),(25,38),(26,39),(27,40),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,37)]])

33 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I6A6B6C6D6E8A8B8C8D12A12B12C12D12E12F12G12H
order12222234444444446666688881212121212121212
size11112222248812121212222441212121244448888

33 irreducible representations

dim11111122222222224444
type+++++++++++++--+--
imageC1C2C2C2C2C2S3D4D4D4D6D6D6Q16C3:D4C3:D4C8.C22S3xD4C3:Q16Q8.14D6
kernelDic6.37D4C6.SD16C12.55D4C2xC3:Q16C3xC22:Q8C22xDic6C22:Q8Dic6C2xC12C22xC6C4:C4C22xC4C2xQ8C2xC6C2xC4C23C6C4C22C2
# reps12121114111114221222

Matrix representation of Dic6.37D4 in GL6(F73)

7210000
7200000
001000
000100
000001
0000720
,
11600000
71620000
0072000
0007200
00006066
00006613
,
7200000
0720000
00567000
00481700
00005045
00004523
,
100000
010000
001000
00137200
000010
000001

G:=sub<GL(6,GF(73))| [72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,72,0,0,0,0,1,0],[11,71,0,0,0,0,60,62,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,60,66,0,0,0,0,66,13],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,56,48,0,0,0,0,70,17,0,0,0,0,0,0,50,45,0,0,0,0,45,23],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,13,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1] >;

Dic6.37D4 in GAP, Magma, Sage, TeX

{\rm Dic}_6._{37}D_4
% in TeX

G:=Group("Dic6.37D4");
// GroupNames label

G:=SmallGroup(192,609);
// by ID

G=gap.SmallGroup(192,609);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,254,219,184,1123,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^12=c^4=d^2=1,b^2=a^6,b*a*b^-1=a^-1,c*a*c^-1=a^7,a*d=d*a,c*b*c^-1=a^9*b,b*d=d*b,d*c*d=a^6*c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<