Extensions 1→N→G→Q→1 with N=Q8×Dic3 and Q=C2

Direct product G=N×Q with N=Q8×Dic3 and Q=C2
dρLabelID
C2×Q8×Dic3192C2xQ8xDic3192,1370

Semidirect products G=N:Q with N=Q8×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×Dic3)⋊1C2 = Dic37SD16φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):1C2192,347
(Q8×Dic3)⋊2C2 = Q83(C4×S3)φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):2C2192,376
(Q8×Dic3)⋊3C2 = Dic3×SD16φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):3C2192,720
(Q8×Dic3)⋊4C2 = Dic35SD16φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):4C2192,722
(Q8×Dic3)⋊5C2 = SD16⋊Dic3φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):5C2192,723
(Q8×Dic3)⋊6C2 = (C3×Q8).D4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):6C2192,725
(Q8×Dic3)⋊7C2 = (C2×Q16)⋊S3φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):7C2192,744
(Q8×Dic3)⋊8C2 = C42.125D6φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):8C2192,1131
(Q8×Dic3)⋊9C2 = C42.126D6φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):9C2192,1133
(Q8×Dic3)⋊10C2 = (Q8×Dic3)⋊C2φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):10C2192,1181
(Q8×Dic3)⋊11C2 = C4⋊C4.187D6φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):11C2192,1183
(Q8×Dic3)⋊12C2 = C6.152- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):12C2192,1184
(Q8×Dic3)⋊13C2 = C6.1182+ 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):13C2192,1194
(Q8×Dic3)⋊14C2 = C6.212- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):14C2192,1198
(Q8×Dic3)⋊15C2 = C6.232- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):15C2192,1200
(Q8×Dic3)⋊16C2 = C6.772- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):16C2192,1201
(Q8×Dic3)⋊17C2 = C6.242- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):17C2192,1202
(Q8×Dic3)⋊18C2 = C42.139D6φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):18C2192,1230
(Q8×Dic3)⋊19C2 = C42.234D6φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):19C2192,1239
(Q8×Dic3)⋊20C2 = C42.143D6φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):20C2192,1240
(Q8×Dic3)⋊21C2 = C42.144D6φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):21C2192,1241
(Q8×Dic3)⋊22C2 = C42.241D6φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):22C2192,1287
(Q8×Dic3)⋊23C2 = C42.176D6φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):23C2192,1290
(Q8×Dic3)⋊24C2 = C42.177D6φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):24C2192,1291
(Q8×Dic3)⋊25C2 = C6.422- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):25C2192,1371
(Q8×Dic3)⋊26C2 = Q8×C3⋊D4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):26C2192,1374
(Q8×Dic3)⋊27C2 = C6.452- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):27C2192,1376
(Q8×Dic3)⋊28C2 = C6.1442+ 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):28C2192,1386
(Q8×Dic3)⋊29C2 = C6.1072- 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):29C2192,1390
(Q8×Dic3)⋊30C2 = C6.1482+ 1+4φ: C2/C1C2 ⊆ Out Q8×Dic396(Q8xDic3):30C2192,1393
(Q8×Dic3)⋊31C2 = C4×S3×Q8φ: trivial image96(Q8xDic3):31C2192,1130
(Q8×Dic3)⋊32C2 = C4×Q83S3φ: trivial image96(Q8xDic3):32C2192,1132
(Q8×Dic3)⋊33C2 = Dic3×C4○D4φ: trivial image96(Q8xDic3):33C2192,1385

Non-split extensions G=N.Q with N=Q8×Dic3 and Q=C2
extensionφ:Q→Out NdρLabelID
(Q8×Dic3).1C2 = C3⋊Q16⋊C4φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).1C2192,348
(Q8×Dic3).2C2 = Dic34Q16φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).2C2192,349
(Q8×Dic3).3C2 = Q82Dic6φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).3C2192,350
(Q8×Dic3).4C2 = Q83Dic6φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).4C2192,352
(Q8×Dic3).5C2 = Q8.3Dic6φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).5C2192,355
(Q8×Dic3).6C2 = Q8.4Dic6φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).6C2192,358
(Q8×Dic3).7C2 = Dic3×Q16φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).7C2192,740
(Q8×Dic3).8C2 = Dic33Q16φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).8C2192,741
(Q8×Dic3).9C2 = Q16⋊Dic3φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).9C2192,743
(Q8×Dic3).10C2 = Q8×Dic6φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).10C2192,1125
(Q8×Dic3).11C2 = Q86Dic6φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).11C2192,1128
(Q8×Dic3).12C2 = Q87Dic6φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).12C2192,1129
(Q8×Dic3).13C2 = Dic68Q8φ: C2/C1C2 ⊆ Out Q8×Dic3192(Q8xDic3).13C2192,1280

׿
×
𝔽