extension | φ:Q→Out N | d | ρ | Label | ID |
(Q8×Dic3)⋊1C2 = Dic3⋊7SD16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):1C2 | 192,347 |
(Q8×Dic3)⋊2C2 = Q8⋊3(C4×S3) | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):2C2 | 192,376 |
(Q8×Dic3)⋊3C2 = Dic3×SD16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):3C2 | 192,720 |
(Q8×Dic3)⋊4C2 = Dic3⋊5SD16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):4C2 | 192,722 |
(Q8×Dic3)⋊5C2 = SD16⋊Dic3 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):5C2 | 192,723 |
(Q8×Dic3)⋊6C2 = (C3×Q8).D4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):6C2 | 192,725 |
(Q8×Dic3)⋊7C2 = (C2×Q16)⋊S3 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):7C2 | 192,744 |
(Q8×Dic3)⋊8C2 = C42.125D6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):8C2 | 192,1131 |
(Q8×Dic3)⋊9C2 = C42.126D6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):9C2 | 192,1133 |
(Q8×Dic3)⋊10C2 = (Q8×Dic3)⋊C2 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):10C2 | 192,1181 |
(Q8×Dic3)⋊11C2 = C4⋊C4.187D6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):11C2 | 192,1183 |
(Q8×Dic3)⋊12C2 = C6.152- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):12C2 | 192,1184 |
(Q8×Dic3)⋊13C2 = C6.1182+ 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):13C2 | 192,1194 |
(Q8×Dic3)⋊14C2 = C6.212- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):14C2 | 192,1198 |
(Q8×Dic3)⋊15C2 = C6.232- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):15C2 | 192,1200 |
(Q8×Dic3)⋊16C2 = C6.772- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):16C2 | 192,1201 |
(Q8×Dic3)⋊17C2 = C6.242- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):17C2 | 192,1202 |
(Q8×Dic3)⋊18C2 = C42.139D6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):18C2 | 192,1230 |
(Q8×Dic3)⋊19C2 = C42.234D6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):19C2 | 192,1239 |
(Q8×Dic3)⋊20C2 = C42.143D6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):20C2 | 192,1240 |
(Q8×Dic3)⋊21C2 = C42.144D6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):21C2 | 192,1241 |
(Q8×Dic3)⋊22C2 = C42.241D6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):22C2 | 192,1287 |
(Q8×Dic3)⋊23C2 = C42.176D6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):23C2 | 192,1290 |
(Q8×Dic3)⋊24C2 = C42.177D6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):24C2 | 192,1291 |
(Q8×Dic3)⋊25C2 = C6.422- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):25C2 | 192,1371 |
(Q8×Dic3)⋊26C2 = Q8×C3⋊D4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):26C2 | 192,1374 |
(Q8×Dic3)⋊27C2 = C6.452- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):27C2 | 192,1376 |
(Q8×Dic3)⋊28C2 = C6.1442+ 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):28C2 | 192,1386 |
(Q8×Dic3)⋊29C2 = C6.1072- 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):29C2 | 192,1390 |
(Q8×Dic3)⋊30C2 = C6.1482+ 1+4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 96 | | (Q8xDic3):30C2 | 192,1393 |
(Q8×Dic3)⋊31C2 = C4×S3×Q8 | φ: trivial image | 96 | | (Q8xDic3):31C2 | 192,1130 |
(Q8×Dic3)⋊32C2 = C4×Q8⋊3S3 | φ: trivial image | 96 | | (Q8xDic3):32C2 | 192,1132 |
(Q8×Dic3)⋊33C2 = Dic3×C4○D4 | φ: trivial image | 96 | | (Q8xDic3):33C2 | 192,1385 |
extension | φ:Q→Out N | d | ρ | Label | ID |
(Q8×Dic3).1C2 = C3⋊Q16⋊C4 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).1C2 | 192,348 |
(Q8×Dic3).2C2 = Dic3⋊4Q16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).2C2 | 192,349 |
(Q8×Dic3).3C2 = Q8⋊2Dic6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).3C2 | 192,350 |
(Q8×Dic3).4C2 = Q8⋊3Dic6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).4C2 | 192,352 |
(Q8×Dic3).5C2 = Q8.3Dic6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).5C2 | 192,355 |
(Q8×Dic3).6C2 = Q8.4Dic6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).6C2 | 192,358 |
(Q8×Dic3).7C2 = Dic3×Q16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).7C2 | 192,740 |
(Q8×Dic3).8C2 = Dic3⋊3Q16 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).8C2 | 192,741 |
(Q8×Dic3).9C2 = Q16⋊Dic3 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).9C2 | 192,743 |
(Q8×Dic3).10C2 = Q8×Dic6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).10C2 | 192,1125 |
(Q8×Dic3).11C2 = Q8⋊6Dic6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).11C2 | 192,1128 |
(Q8×Dic3).12C2 = Q8⋊7Dic6 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).12C2 | 192,1129 |
(Q8×Dic3).13C2 = Dic6⋊8Q8 | φ: C2/C1 → C2 ⊆ Out Q8×Dic3 | 192 | | (Q8xDic3).13C2 | 192,1280 |