direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q8×Dic3, C3⋊3(C4×Q8), (C3×Q8)⋊3C4, C2.3(S3×Q8), (C2×C4).56D6, (C2×Q8).7S3, (C6×Q8).5C2, C6.16(C2×Q8), C12.14(C2×C4), C4.4(C2×Dic3), C6.35(C4○D4), C4⋊Dic3.12C2, (C2×C6).57C23, C6.26(C22×C4), (C4×Dic3).4C2, (C2×C12).39C22, C2.3(Q8⋊3S3), C2.7(C22×Dic3), C22.26(C22×S3), (C2×Dic3).40C22, SmallGroup(96,152)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8×Dic3
G = < a,b,c,d | a4=c6=1, b2=a2, d2=c3, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 114 in 70 conjugacy classes, 51 normal (14 characteristic)
C1, C2, C3, C4, C4, C22, C6, C2×C4, C2×C4, Q8, Dic3, Dic3, C12, C2×C6, C42, C4⋊C4, C2×Q8, C2×Dic3, C2×Dic3, C2×C12, C3×Q8, C4×Q8, C4×Dic3, C4⋊Dic3, C6×Q8, Q8×Dic3
Quotients: C1, C2, C4, C22, S3, C2×C4, Q8, C23, Dic3, D6, C22×C4, C2×Q8, C4○D4, C2×Dic3, C22×S3, C4×Q8, S3×Q8, Q8⋊3S3, C22×Dic3, Q8×Dic3
Character table of Q8×Dic3
class | 1 | 2A | 2B | 2C | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 6A | 6B | 6C | 12A | 12B | 12C | 12D | 12E | 12F | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 6 | 6 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -i | -i | i | i | i | i | -i | i | -i | -i | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ10 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | i | i | -i | -i | i | i | i | -i | -i | -i | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ11 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | i | i | -i | -i | -i | -i | i | -i | i | i | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | linear of order 4 |
ρ12 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -i | -i | i | i | -i | -i | -i | i | i | i | -1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | linear of order 4 |
ρ13 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | -i | -i | i | i | -i | i | i | -i | i | -i | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ14 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | i | i | -i | -i | -i | i | -i | i | i | -i | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ15 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | i | i | -i | -i | i | -i | -i | i | -i | i | -1 | -1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | linear of order 4 |
ρ16 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -i | -i | i | i | i | -i | i | -i | -i | i | -1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | linear of order 4 |
ρ17 | 2 | 2 | 2 | 2 | -1 | -2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 2 | -1 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ19 | 2 | 2 | 2 | 2 | -1 | -2 | -2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ20 | 2 | 2 | 2 | 2 | -1 | 2 | -2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ21 | 2 | 2 | -2 | -2 | -1 | -2 | -2 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ22 | 2 | 2 | -2 | -2 | -1 | 2 | 2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ23 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ24 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ25 | 2 | 2 | -2 | -2 | -1 | -2 | 2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 | symplectic lifted from Dic3, Schur index 2 |
ρ26 | 2 | 2 | -2 | -2 | -1 | 2 | -2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | symplectic lifted from Dic3, Schur index 2 |
ρ27 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ28 | 2 | -2 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4○D4 |
ρ29 | 4 | -4 | -4 | 4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from Q8⋊3S3, Schur index 2 |
ρ30 | 4 | -4 | 4 | -4 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from S3×Q8, Schur index 2 |
(1 28 16 24)(2 29 17 19)(3 30 18 20)(4 25 13 21)(5 26 14 22)(6 27 15 23)(7 81 93 86)(8 82 94 87)(9 83 95 88)(10 84 96 89)(11 79 91 90)(12 80 92 85)(31 43 41 52)(32 44 42 53)(33 45 37 54)(34 46 38 49)(35 47 39 50)(36 48 40 51)(55 78 66 67)(56 73 61 68)(57 74 62 69)(58 75 63 70)(59 76 64 71)(60 77 65 72)
(1 40 16 36)(2 41 17 31)(3 42 18 32)(4 37 13 33)(5 38 14 34)(6 39 15 35)(7 74 93 69)(8 75 94 70)(9 76 95 71)(10 77 96 72)(11 78 91 67)(12 73 92 68)(19 52 29 43)(20 53 30 44)(21 54 25 45)(22 49 26 46)(23 50 27 47)(24 51 28 48)(55 90 66 79)(56 85 61 80)(57 86 62 81)(58 87 63 82)(59 88 64 83)(60 89 65 84)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)
(1 57 4 60)(2 56 5 59)(3 55 6 58)(7 54 10 51)(8 53 11 50)(9 52 12 49)(13 65 16 62)(14 64 17 61)(15 63 18 66)(19 68 22 71)(20 67 23 70)(21 72 24 69)(25 77 28 74)(26 76 29 73)(27 75 30 78)(31 80 34 83)(32 79 35 82)(33 84 36 81)(37 89 40 86)(38 88 41 85)(39 87 42 90)(43 92 46 95)(44 91 47 94)(45 96 48 93)
G:=sub<Sym(96)| (1,28,16,24)(2,29,17,19)(3,30,18,20)(4,25,13,21)(5,26,14,22)(6,27,15,23)(7,81,93,86)(8,82,94,87)(9,83,95,88)(10,84,96,89)(11,79,91,90)(12,80,92,85)(31,43,41,52)(32,44,42,53)(33,45,37,54)(34,46,38,49)(35,47,39,50)(36,48,40,51)(55,78,66,67)(56,73,61,68)(57,74,62,69)(58,75,63,70)(59,76,64,71)(60,77,65,72), (1,40,16,36)(2,41,17,31)(3,42,18,32)(4,37,13,33)(5,38,14,34)(6,39,15,35)(7,74,93,69)(8,75,94,70)(9,76,95,71)(10,77,96,72)(11,78,91,67)(12,73,92,68)(19,52,29,43)(20,53,30,44)(21,54,25,45)(22,49,26,46)(23,50,27,47)(24,51,28,48)(55,90,66,79)(56,85,61,80)(57,86,62,81)(58,87,63,82)(59,88,64,83)(60,89,65,84), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,57,4,60)(2,56,5,59)(3,55,6,58)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,65,16,62)(14,64,17,61)(15,63,18,66)(19,68,22,71)(20,67,23,70)(21,72,24,69)(25,77,28,74)(26,76,29,73)(27,75,30,78)(31,80,34,83)(32,79,35,82)(33,84,36,81)(37,89,40,86)(38,88,41,85)(39,87,42,90)(43,92,46,95)(44,91,47,94)(45,96,48,93)>;
G:=Group( (1,28,16,24)(2,29,17,19)(3,30,18,20)(4,25,13,21)(5,26,14,22)(6,27,15,23)(7,81,93,86)(8,82,94,87)(9,83,95,88)(10,84,96,89)(11,79,91,90)(12,80,92,85)(31,43,41,52)(32,44,42,53)(33,45,37,54)(34,46,38,49)(35,47,39,50)(36,48,40,51)(55,78,66,67)(56,73,61,68)(57,74,62,69)(58,75,63,70)(59,76,64,71)(60,77,65,72), (1,40,16,36)(2,41,17,31)(3,42,18,32)(4,37,13,33)(5,38,14,34)(6,39,15,35)(7,74,93,69)(8,75,94,70)(9,76,95,71)(10,77,96,72)(11,78,91,67)(12,73,92,68)(19,52,29,43)(20,53,30,44)(21,54,25,45)(22,49,26,46)(23,50,27,47)(24,51,28,48)(55,90,66,79)(56,85,61,80)(57,86,62,81)(58,87,63,82)(59,88,64,83)(60,89,65,84), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96), (1,57,4,60)(2,56,5,59)(3,55,6,58)(7,54,10,51)(8,53,11,50)(9,52,12,49)(13,65,16,62)(14,64,17,61)(15,63,18,66)(19,68,22,71)(20,67,23,70)(21,72,24,69)(25,77,28,74)(26,76,29,73)(27,75,30,78)(31,80,34,83)(32,79,35,82)(33,84,36,81)(37,89,40,86)(38,88,41,85)(39,87,42,90)(43,92,46,95)(44,91,47,94)(45,96,48,93) );
G=PermutationGroup([[(1,28,16,24),(2,29,17,19),(3,30,18,20),(4,25,13,21),(5,26,14,22),(6,27,15,23),(7,81,93,86),(8,82,94,87),(9,83,95,88),(10,84,96,89),(11,79,91,90),(12,80,92,85),(31,43,41,52),(32,44,42,53),(33,45,37,54),(34,46,38,49),(35,47,39,50),(36,48,40,51),(55,78,66,67),(56,73,61,68),(57,74,62,69),(58,75,63,70),(59,76,64,71),(60,77,65,72)], [(1,40,16,36),(2,41,17,31),(3,42,18,32),(4,37,13,33),(5,38,14,34),(6,39,15,35),(7,74,93,69),(8,75,94,70),(9,76,95,71),(10,77,96,72),(11,78,91,67),(12,73,92,68),(19,52,29,43),(20,53,30,44),(21,54,25,45),(22,49,26,46),(23,50,27,47),(24,51,28,48),(55,90,66,79),(56,85,61,80),(57,86,62,81),(58,87,63,82),(59,88,64,83),(60,89,65,84)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96)], [(1,57,4,60),(2,56,5,59),(3,55,6,58),(7,54,10,51),(8,53,11,50),(9,52,12,49),(13,65,16,62),(14,64,17,61),(15,63,18,66),(19,68,22,71),(20,67,23,70),(21,72,24,69),(25,77,28,74),(26,76,29,73),(27,75,30,78),(31,80,34,83),(32,79,35,82),(33,84,36,81),(37,89,40,86),(38,88,41,85),(39,87,42,90),(43,92,46,95),(44,91,47,94),(45,96,48,93)]])
Q8×Dic3 is a maximal subgroup of
Dic3⋊7SD16 C3⋊Q16⋊C4 Dic3⋊4Q16 Q8⋊2Dic6 Q8⋊3Dic6 Q8.3Dic6 Q8.4Dic6 Q8⋊3(C4×S3) Dic3⋊5SD16 SD16⋊Dic3 (C3×Q8).D4 Dic3⋊3Q16 Q16⋊Dic3 (C2×Q16)⋊S3 Q8⋊6Dic6 Q8⋊7Dic6 C4×S3×Q8 C42.125D6 C4×Q8⋊3S3 C42.126D6 (Q8×Dic3)⋊C2 C4⋊C4.187D6 C6.152- 1+4 C6.1182+ 1+4 C6.212- 1+4 C6.232- 1+4 C6.772- 1+4 C6.242- 1+4 C42.139D6 C42.234D6 C42.143D6 C42.144D6 Dic6⋊8Q8 C42.241D6 C42.176D6 C42.177D6 C6.422- 1+4 C6.452- 1+4 C6.1442+ 1+4 C6.1072- 1+4 C6.1482+ 1+4 C62.13C23 Dic15⋊6Q8
Q8×Dic3 is a maximal quotient of
C4⋊C4⋊5Dic3 C4⋊C4⋊6Dic3 C42.210D6 (C6×Q8)⋊7C4 C62.13C23 Dic15⋊6Q8
Matrix representation of Q8×Dic3 ►in GL4(𝔽13) generated by
12 | 11 | 0 | 0 |
1 | 1 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
5 | 0 | 0 | 0 |
8 | 8 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 |
0 | 12 | 0 | 0 |
0 | 0 | 1 | 12 |
0 | 0 | 1 | 0 |
8 | 0 | 0 | 0 |
0 | 8 | 0 | 0 |
0 | 0 | 9 | 2 |
0 | 0 | 11 | 4 |
G:=sub<GL(4,GF(13))| [12,1,0,0,11,1,0,0,0,0,12,0,0,0,0,12],[5,8,0,0,0,8,0,0,0,0,1,0,0,0,0,1],[12,0,0,0,0,12,0,0,0,0,1,1,0,0,12,0],[8,0,0,0,0,8,0,0,0,0,9,11,0,0,2,4] >;
Q8×Dic3 in GAP, Magma, Sage, TeX
Q_8\times {\rm Dic}_3
% in TeX
G:=Group("Q8xDic3");
// GroupNames label
G:=SmallGroup(96,152);
// by ID
G=gap.SmallGroup(96,152);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-3,48,103,188,86,2309]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^6=1,b^2=a^2,d^2=c^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations
Export