Extensions 1→N→G→Q→1 with N=D4⋊D6 and Q=C2

Direct product G=N×Q with N=D4⋊D6 and Q=C2
dρLabelID
C2×D4⋊D648C2xD4:D6192,1379

Semidirect products G=N:Q with N=D4⋊D6 and Q=C2
extensionφ:Q→Out NdρLabelID
D4⋊D61C2 = Q85D12φ: C2/C1C2 ⊆ Out D4⋊D6244+D4:D6:1C2192,381
D4⋊D62C2 = D4.10D12φ: C2/C1C2 ⊆ Out D4⋊D6484D4:D6:2C2192,386
D4⋊D63C2 = Q8.9D12φ: C2/C1C2 ⊆ Out D4⋊D6484+D4:D6:3C2192,701
D4⋊D64C2 = M4(2).D6φ: C2/C1C2 ⊆ Out D4⋊D6488+D4:D6:4C2192,758
D4⋊D65C2 = 2+ 1+46S3φ: C2/C1C2 ⊆ Out D4⋊D6248+D4:D6:5C2192,800
D4⋊D66C2 = 2- 1+44S3φ: C2/C1C2 ⊆ Out D4⋊D6488+D4:D6:6C2192,804
D4⋊D67C2 = D815D6φ: C2/C1C2 ⊆ Out D4⋊D6484+D4:D6:7C2192,1328
D4⋊D68C2 = D811D6φ: C2/C1C2 ⊆ Out D4⋊D6484D4:D6:8C2192,1329
D4⋊D69C2 = S3×C8⋊C22φ: C2/C1C2 ⊆ Out D4⋊D6248+D4:D6:9C2192,1331
D4⋊D610C2 = D24⋊C22φ: C2/C1C2 ⊆ Out D4⋊D6488+D4:D6:10C2192,1336
D4⋊D611C2 = D12.32C23φ: C2/C1C2 ⊆ Out D4⋊D6488+D4:D6:11C2192,1394
D4⋊D612C2 = D12.34C23φ: C2/C1C2 ⊆ Out D4⋊D6488+D4:D6:12C2192,1396
D4⋊D613C2 = C12.C24φ: trivial image484D4:D6:13C2192,1381

Non-split extensions G=N.Q with N=D4⋊D6 and Q=C2
extensionφ:Q→Out NdρLabelID
D4⋊D6.1C2 = Q8.8D12φ: C2/C1C2 ⊆ Out D4⋊D6484D4:D6.1C2192,700
D4⋊D6.2C2 = M4(2).15D6φ: C2/C1C2 ⊆ Out D4⋊D6488+D4:D6.2C2192,762

׿
×
𝔽