metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: D4⋊4D12, Q8⋊5D12, C42⋊4D6, D12⋊15D4, Dic6⋊15D4, M4(2)⋊3D6, C4≀C2⋊1S3, (C3×D4)⋊3D4, (C3×Q8)⋊3D4, D4○D12⋊1C2, C8⋊D6⋊8C2, C4.9(C2×D12), D4⋊D6⋊1C2, C4⋊D12⋊6C2, C3⋊2(D4⋊4D4), C4○D4.17D6, C4.125(S3×D4), C42⋊4S3⋊5C2, (C4×C12)⋊11C22, C6.27C22≀C2, C12.337(C2×D4), (C22×S3).2D4, C22.29(S3×D4), C12.46D4⋊1C2, (C2×D12)⋊13C22, C4.Dic3⋊4C22, C2.30(D6⋊D4), (C2×C12).262C23, C4○D12.11C22, (C3×M4(2))⋊10C22, (C3×C4≀C2)⋊1C2, (C2×C6).26(C2×D4), (C3×C4○D4).3C22, (C2×C4).109(C22×S3), SmallGroup(192,381)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for Q8⋊5D12
G = < a,b,c,d | a4=c12=d2=1, b2=a2, bab-1=dad=a-1, ac=ca, cbc-1=dbd=a-1b, dcd=c-1 >
Subgroups: 672 in 168 conjugacy classes, 39 normal (37 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C2×C4, C2×C4, D4, D4, Q8, Q8, C23, Dic3, C12, C12, D6, C2×C6, C2×C6, C42, M4(2), M4(2), D8, SD16, C2×D4, C4○D4, C4○D4, C3⋊C8, C24, Dic6, C4×S3, D12, D12, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×D4, C3×Q8, C22×S3, C22×S3, C4.D4, C4≀C2, C4≀C2, C4⋊1D4, C8⋊C22, 2+ 1+4, C24⋊C2, D24, C4.Dic3, D4⋊S3, Q8⋊2S3, C4×C12, C3×M4(2), C2×D12, C2×D12, C4○D12, C4○D12, S3×D4, Q8⋊3S3, C3×C4○D4, D4⋊4D4, C42⋊4S3, C12.46D4, C3×C4≀C2, C4⋊D12, C8⋊D6, D4⋊D6, D4○D12, Q8⋊5D12
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, D12, C22×S3, C22≀C2, C2×D12, S3×D4, D4⋊4D4, D6⋊D4, Q8⋊5D12
Character table of Q8⋊5D12
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 8A | 8B | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | 24A | 24B | |
size | 1 | 1 | 2 | 4 | 12 | 12 | 12 | 24 | 2 | 2 | 2 | 4 | 4 | 4 | 12 | 2 | 4 | 8 | 8 | 24 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | 2 | 0 | -1 | -1 | -1 | -2 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 2 | -2 | 2 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | orthogonal lifted from D4 |
ρ14 | 2 | 2 | -2 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | 2 | 0 | 0 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ15 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | -2 | 0 | -1 | -1 | 1 | -2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | 0 | 0 | -2 | 2 | 0 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ17 | 2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | -2 | -2 | -2 | 0 | -1 | -1 | 1 | 2 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | orthogonal lifted from D6 |
ρ18 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | 2 | 2 | 2 | 2 | 0 | -1 | -1 | -1 | 2 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ19 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | -2 | 0 | -1 | 1 | -1 | 0 | 0 | 1 | 1 | √3 | √3 | -√3 | -√3 | -1 | 1 | √3 | -√3 | orthogonal lifted from D12 |
ρ20 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 2 | 0 | -1 | 1 | 1 | 0 | 0 | 1 | 1 | √3 | √3 | -√3 | -√3 | -1 | -1 | -√3 | √3 | orthogonal lifted from D12 |
ρ21 | 2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | -2 | 0 | -1 | 1 | -1 | 0 | 0 | 1 | 1 | -√3 | -√3 | √3 | √3 | -1 | 1 | -√3 | √3 | orthogonal lifted from D12 |
ρ22 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 2 | 0 | -1 | 1 | 1 | 0 | 0 | 1 | 1 | -√3 | -√3 | √3 | √3 | -1 | -1 | √3 | -√3 | orthogonal lifted from D12 |
ρ23 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | -2 | 2 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ24 | 4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | -4 | 4 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ25 | 4 | 4 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | -4 | -4 | 0 | 0 | 0 | 0 | -2 | -2 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 2 | -2 | 0 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from D4⋊4D4 |
ρ27 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | 1+√3 | -1-√3 | -1+√3 | 1-√3 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | -1+√3 | 1-√3 | 1+√3 | -1-√3 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 2√3 | -2√3 | -1-√3 | 1+√3 | 1-√3 | -1+√3 | 0 | 0 | 0 | 0 | orthogonal faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | -2√3 | 2√3 | 1-√3 | -1+√3 | -1-√3 | 1+√3 | 0 | 0 | 0 | 0 | orthogonal faithful |
(1 10 4 7)(2 11 5 8)(3 12 6 9)(13 22 19 16)(14 23 20 17)(15 24 21 18)
(1 22 4 16)(2 20 5 14)(3 18 6 24)(7 19 10 13)(8 17 11 23)(9 15 12 21)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)
(1 6)(2 5)(3 4)(7 9)(10 12)(13 18)(14 17)(15 16)(19 24)(20 23)(21 22)
G:=sub<Sym(24)| (1,10,4,7)(2,11,5,8)(3,12,6,9)(13,22,19,16)(14,23,20,17)(15,24,21,18), (1,22,4,16)(2,20,5,14)(3,18,6,24)(7,19,10,13)(8,17,11,23)(9,15,12,21), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,6)(2,5)(3,4)(7,9)(10,12)(13,18)(14,17)(15,16)(19,24)(20,23)(21,22)>;
G:=Group( (1,10,4,7)(2,11,5,8)(3,12,6,9)(13,22,19,16)(14,23,20,17)(15,24,21,18), (1,22,4,16)(2,20,5,14)(3,18,6,24)(7,19,10,13)(8,17,11,23)(9,15,12,21), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24), (1,6)(2,5)(3,4)(7,9)(10,12)(13,18)(14,17)(15,16)(19,24)(20,23)(21,22) );
G=PermutationGroup([[(1,10,4,7),(2,11,5,8),(3,12,6,9),(13,22,19,16),(14,23,20,17),(15,24,21,18)], [(1,22,4,16),(2,20,5,14),(3,18,6,24),(7,19,10,13),(8,17,11,23),(9,15,12,21)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24)], [(1,6),(2,5),(3,4),(7,9),(10,12),(13,18),(14,17),(15,16),(19,24),(20,23),(21,22)]])
G:=TransitiveGroup(24,365);
Matrix representation of Q8⋊5D12 ►in GL4(𝔽73) generated by
7 | 14 | 0 | 0 |
59 | 66 | 0 | 0 |
0 | 0 | 66 | 59 |
0 | 0 | 14 | 7 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
72 | 0 | 0 | 0 |
0 | 72 | 0 | 0 |
72 | 72 | 0 | 0 |
1 | 0 | 0 | 0 |
0 | 0 | 7 | 66 |
0 | 0 | 7 | 14 |
72 | 72 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 7 | 66 |
0 | 0 | 59 | 66 |
G:=sub<GL(4,GF(73))| [7,59,0,0,14,66,0,0,0,0,66,14,0,0,59,7],[0,0,72,0,0,0,0,72,1,0,0,0,0,1,0,0],[72,1,0,0,72,0,0,0,0,0,7,7,0,0,66,14],[72,0,0,0,72,1,0,0,0,0,7,59,0,0,66,66] >;
Q8⋊5D12 in GAP, Magma, Sage, TeX
Q_8\rtimes_5D_{12}
% in TeX
G:=Group("Q8:5D12");
// GroupNames label
G:=SmallGroup(192,381);
// by ID
G=gap.SmallGroup(192,381);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,58,570,1684,851,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^4=c^12=d^2=1,b^2=a^2,b*a*b^-1=d*a*d=a^-1,a*c=c*a,c*b*c^-1=d*b*d=a^-1*b,d*c*d=c^-1>;
// generators/relations
Export