Copied to
clipboard

G = D8:11D6order 192 = 26·3

5th semidirect product of D8 and D6 acting via D6/C6=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D8:11D6, Q16:10D6, SD16:15D6, D12.46D4, C12.17C24, C24.43C23, Dic6.46D4, D12.12C23, Dic6.11C23, C4oD4:5D6, C4oD8:5S3, (C2xC8):14D6, D4oD12:6C2, D8:S3:6C2, Q8oD12:5C2, C3:D4.2D4, C3:C8.8C23, C8oD12:10C2, D4:D6:8C2, D4:S3:4C22, (S3xSD16):6C2, D6.30(C2xD4), C3:3(D4oSD16), Q16:S3:6C2, C4.144(S3xD4), (S3xQ8):2C22, C22.9(S3xD4), (S3xC8):10C22, (C2xC24):17C22, Q8.7D6:6C2, Q8.14D6:7C2, C12.350(C2xD4), (C3xD8):16C22, C4.17(S3xC23), C8.17(C22xS3), D4.S3:3C22, (S3xD4).2C22, C3:Q16:2C22, C24:C2:21C22, C8:S3:16C22, D4:2S3:2C22, (C4xS3).10C23, Dic3.35(C2xD4), (C3xQ16):14C22, Q8:2S3:3C22, (C3xD4).11C23, D4.11(C22xS3), C6.118(C22xD4), (C3xQ8).11C23, Q8.21(C22xS3), (C2xC12).534C23, C4oD12.55C22, (C3xSD16):16C22, (C2xDic6):38C22, C4.Dic3:31C22, Q8:3S3.2C22, (C2xD12).181C22, C2.91(C2xS3xD4), (C3xC4oD8):7C2, (C2xC6).14(C2xD4), (C2xC24:C2):27C2, (C3xC4oD4):4C22, (C2xC4).233(C22xS3), SmallGroup(192,1329)

Series: Derived Chief Lower central Upper central

C1C12 — D8:11D6
C1C3C6C12C4xS3C4oD12D4oD12 — D8:11D6
C3C6C12 — D8:11D6
C1C2C2xC4C4oD8

Generators and relations for D8:11D6
 G = < a,b,c,d | a8=b2=c6=d2=1, bab=a-1, ac=ca, dad=a3, cbc-1=a4b, dbd=a6b, dcd=c-1 >

Subgroups: 728 in 258 conjugacy classes, 99 normal (53 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, S3, C6, C6, C8, C8, C2xC4, C2xC4, D4, D4, Q8, Q8, C23, Dic3, Dic3, C12, C12, D6, D6, C2xC6, C2xC6, C2xC8, C2xC8, M4(2), D8, D8, SD16, SD16, Q16, Q16, C2xD4, C2xQ8, C4oD4, C4oD4, C3:C8, C24, Dic6, Dic6, Dic6, C4xS3, C4xS3, D12, D12, D12, C2xDic3, C3:D4, C3:D4, C2xC12, C2xC12, C3xD4, C3xD4, C3xQ8, C22xS3, C8oD4, C2xSD16, C4oD8, C4oD8, C8:C22, C8.C22, 2+ 1+4, 2- 1+4, S3xC8, C8:S3, C24:C2, C4.Dic3, D4:S3, D4.S3, Q8:2S3, C3:Q16, C2xC24, C3xD8, C3xSD16, C3xQ16, C2xDic6, C2xDic6, C2xD12, C2xD12, C4oD12, C4oD12, S3xD4, S3xD4, D4:2S3, D4:2S3, S3xQ8, Q8:3S3, C3xC4oD4, D4oSD16, C8oD12, C2xC24:C2, D8:S3, S3xSD16, Q8.7D6, Q16:S3, D4:D6, Q8.14D6, C3xC4oD8, D4oD12, Q8oD12, D8:11D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2xD4, C24, C22xS3, C22xD4, S3xD4, S3xC23, D4oSD16, C2xS3xD4, D8:11D6

Smallest permutation representation of D8:11D6
On 48 points
Generators in S48
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 8)(2 7)(3 6)(4 5)(9 10)(11 16)(12 15)(13 14)(17 18)(19 24)(20 23)(21 22)(25 30)(26 29)(27 28)(31 32)(33 38)(34 37)(35 36)(39 40)(41 48)(42 47)(43 46)(44 45)
(1 16 45 26 18 34)(2 9 46 27 19 35)(3 10 47 28 20 36)(4 11 48 29 21 37)(5 12 41 30 22 38)(6 13 42 31 23 39)(7 14 43 32 24 40)(8 15 44 25 17 33)
(1 47)(2 42)(3 45)(4 48)(5 43)(6 46)(7 41)(8 44)(9 13)(10 16)(12 14)(18 20)(19 23)(22 24)(25 33)(26 36)(27 39)(28 34)(29 37)(30 40)(31 35)(32 38)

G:=sub<Sym(48)| (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,18)(19,24)(20,23)(21,22)(25,30)(26,29)(27,28)(31,32)(33,38)(34,37)(35,36)(39,40)(41,48)(42,47)(43,46)(44,45), (1,16,45,26,18,34)(2,9,46,27,19,35)(3,10,47,28,20,36)(4,11,48,29,21,37)(5,12,41,30,22,38)(6,13,42,31,23,39)(7,14,43,32,24,40)(8,15,44,25,17,33), (1,47)(2,42)(3,45)(4,48)(5,43)(6,46)(7,41)(8,44)(9,13)(10,16)(12,14)(18,20)(19,23)(22,24)(25,33)(26,36)(27,39)(28,34)(29,37)(30,40)(31,35)(32,38)>;

G:=Group( (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,8)(2,7)(3,6)(4,5)(9,10)(11,16)(12,15)(13,14)(17,18)(19,24)(20,23)(21,22)(25,30)(26,29)(27,28)(31,32)(33,38)(34,37)(35,36)(39,40)(41,48)(42,47)(43,46)(44,45), (1,16,45,26,18,34)(2,9,46,27,19,35)(3,10,47,28,20,36)(4,11,48,29,21,37)(5,12,41,30,22,38)(6,13,42,31,23,39)(7,14,43,32,24,40)(8,15,44,25,17,33), (1,47)(2,42)(3,45)(4,48)(5,43)(6,46)(7,41)(8,44)(9,13)(10,16)(12,14)(18,20)(19,23)(22,24)(25,33)(26,36)(27,39)(28,34)(29,37)(30,40)(31,35)(32,38) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,8),(2,7),(3,6),(4,5),(9,10),(11,16),(12,15),(13,14),(17,18),(19,24),(20,23),(21,22),(25,30),(26,29),(27,28),(31,32),(33,38),(34,37),(35,36),(39,40),(41,48),(42,47),(43,46),(44,45)], [(1,16,45,26,18,34),(2,9,46,27,19,35),(3,10,47,28,20,36),(4,11,48,29,21,37),(5,12,41,30,22,38),(6,13,42,31,23,39),(7,14,43,32,24,40),(8,15,44,25,17,33)], [(1,47),(2,42),(3,45),(4,48),(5,43),(6,46),(7,41),(8,44),(9,13),(10,16),(12,14),(18,20),(19,23),(22,24),(25,33),(26,36),(27,39),(28,34),(29,37),(30,40),(31,35),(32,38)]])

36 conjugacy classes

class 1 2A2B2C2D2E2F2G2H 3 4A4B4C4D4E4F4G4H6A6B6C6D8A8B8C8D8E12A12B12C12D12E24A24B24C24D
order122222222344444444666688888121212121224242424
size112446612122224466121224882241212224884444

36 irreducible representations

dim1111111111112222222224444
type+++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2S3D4D4D4D6D6D6D6D6S3xD4S3xD4D4oSD16D8:11D6
kernelD8:11D6C8oD12C2xC24:C2D8:S3S3xSD16Q8.7D6Q16:S3D4:D6Q8.14D6C3xC4oD8D4oD12Q8oD12C4oD8Dic6D12C3:D4C2xC8D8SD16Q16C4oD4C4C22C3C1
# reps1112222111111112112121124

Matrix representation of D8:11D6 in GL4(F73) generated by

42623111
11316242
42624262
11311131
,
42623111
11316242
31113111
62426242
,
001466
0077
59700
666600
,
00172
00072
17200
07200
G:=sub<GL(4,GF(73))| [42,11,42,11,62,31,62,31,31,62,42,11,11,42,62,31],[42,11,31,62,62,31,11,42,31,62,31,62,11,42,11,42],[0,0,59,66,0,0,7,66,14,7,0,0,66,7,0,0],[0,0,1,0,0,0,72,72,1,0,0,0,72,72,0,0] >;

D8:11D6 in GAP, Magma, Sage, TeX

D_8\rtimes_{11}D_6
% in TeX

G:=Group("D8:11D6");
// GroupNames label

G:=SmallGroup(192,1329);
// by ID

G=gap.SmallGroup(192,1329);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,477,387,570,185,136,438,235,102,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^8=b^2=c^6=d^2=1,b*a*b=a^-1,a*c=c*a,d*a*d=a^3,c*b*c^-1=a^4*b,d*b*d=a^6*b,d*c*d=c^-1>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<