Extensions 1→N→G→Q→1 with N=M4(2) and Q=C12

Direct product G=N×Q with N=M4(2) and Q=C12

Semidirect products G=N:Q with N=M4(2) and Q=C12
extensionφ:Q→Out NdρLabelID
M4(2)⋊1C12 = C3×M4(2)⋊C4φ: C12/C6C2 ⊆ Out M4(2)96M4(2):1C12192,861
M4(2)⋊2C12 = C3×C426C4φ: C12/C6C2 ⊆ Out M4(2)48M4(2):2C12192,145
M4(2)⋊3C12 = C3×C22.C42φ: C12/C6C2 ⊆ Out M4(2)96M4(2):3C12192,149
M4(2)⋊4C12 = C3×M4(2)⋊4C4φ: C12/C6C2 ⊆ Out M4(2)484M4(2):4C12192,150
M4(2)⋊5C12 = C3×C82M4(2)φ: trivial image96M4(2):5C12192,838

Non-split extensions G=N.Q with N=M4(2) and Q=C12
extensionφ:Q→Out NdρLabelID
M4(2).1C12 = C3×M4(2).C4φ: C12/C6C2 ⊆ Out M4(2)484M4(2).1C12192,863
M4(2).2C12 = C3×C4.C42φ: C12/C6C2 ⊆ Out M4(2)96M4(2).2C12192,147
M4(2).3C12 = C3×D4.C8φ: C12/C6C2 ⊆ Out M4(2)962M4(2).3C12192,156
M4(2).4C12 = C3×D4○C16φ: trivial image962M4(2).4C12192,937