Copied to
clipboard

G = C3×M4(2)⋊4C4order 192 = 26·3

Direct product of C3 and M4(2)⋊4C4

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×M4(2)⋊4C4, M4(2)⋊4C12, (C2×C24)⋊4C4, (C2×C8)⋊2C12, C12.54(C4⋊C4), (C2×C12).38Q8, (C2×C12).510D4, C22⋊C4.1C12, C23.7(C2×C12), (C2×C6).10C42, C22.3(C4×C12), (C3×M4(2))⋊10C4, C42⋊C2.3C6, (C2×M4(2)).9C6, (C6×M4(2)).21C2, C12.106(C22⋊C4), C6.28(C2.C42), (C22×C12).389C22, C4.5(C3×C4⋊C4), (C2×C4).3(C3×Q8), C22.6(C3×C4⋊C4), (C2×C6).23(C4⋊C4), (C2×C4).15(C2×C12), (C2×C4).115(C3×D4), (C3×C22⋊C4).2C4, C4.27(C3×C22⋊C4), (C2×C12).326(C2×C4), (C22×C6).18(C2×C4), (C22×C4).24(C2×C6), C22.9(C3×C22⋊C4), (C2×C6).72(C22⋊C4), C2.9(C3×C2.C42), (C3×C42⋊C2).17C2, SmallGroup(192,150)

Series: Derived Chief Lower central Upper central

C1C22 — C3×M4(2)⋊4C4
C1C2C4C2×C4C22×C4C22×C12C3×C42⋊C2 — C3×M4(2)⋊4C4
C1C2C22 — C3×M4(2)⋊4C4
C1C12C22×C12 — C3×M4(2)⋊4C4

Generators and relations for C3×M4(2)⋊4C4
 G = < a,b,c,d | a3=b8=c2=d4=1, ab=ba, ac=ca, ad=da, cbc=b5, dbd-1=bc, dcd-1=b4c >

Subgroups: 138 in 90 conjugacy classes, 54 normal (42 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C23, C12, C12, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), M4(2), C22×C4, C24, C2×C12, C2×C12, C22×C6, C42⋊C2, C2×M4(2), C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C2×C24, C3×M4(2), C3×M4(2), C22×C12, M4(2)⋊4C4, C3×C42⋊C2, C6×M4(2), C3×M4(2)⋊4C4
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C12, C3×D4, C3×Q8, C2.C42, C4×C12, C3×C22⋊C4, C3×C4⋊C4, M4(2)⋊4C4, C3×C2.C42, C3×M4(2)⋊4C4

Smallest permutation representation of C3×M4(2)⋊4C4
On 48 points
Generators in S48
(1 38 11)(2 39 12)(3 40 13)(4 33 14)(5 34 15)(6 35 16)(7 36 9)(8 37 10)(17 26 44)(18 27 45)(19 28 46)(20 29 47)(21 30 48)(22 31 41)(23 32 42)(24 25 43)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
(1 22)(2 19)(3 24)(4 21)(5 18)(6 23)(7 20)(8 17)(9 47)(10 44)(11 41)(12 46)(13 43)(14 48)(15 45)(16 42)(25 40)(26 37)(27 34)(28 39)(29 36)(30 33)(31 38)(32 35)
(2 23 6 19)(3 7)(4 21 8 17)(9 13)(10 44 14 48)(12 42 16 46)(18 22)(26 33 30 37)(27 31)(28 39 32 35)(36 40)(41 45)

G:=sub<Sym(48)| (1,38,11)(2,39,12)(3,40,13)(4,33,14)(5,34,15)(6,35,16)(7,36,9)(8,37,10)(17,26,44)(18,27,45)(19,28,46)(20,29,47)(21,30,48)(22,31,41)(23,32,42)(24,25,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(25,40)(26,37)(27,34)(28,39)(29,36)(30,33)(31,38)(32,35), (2,23,6,19)(3,7)(4,21,8,17)(9,13)(10,44,14,48)(12,42,16,46)(18,22)(26,33,30,37)(27,31)(28,39,32,35)(36,40)(41,45)>;

G:=Group( (1,38,11)(2,39,12)(3,40,13)(4,33,14)(5,34,15)(6,35,16)(7,36,9)(8,37,10)(17,26,44)(18,27,45)(19,28,46)(20,29,47)(21,30,48)(22,31,41)(23,32,42)(24,25,43), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48), (1,22)(2,19)(3,24)(4,21)(5,18)(6,23)(7,20)(8,17)(9,47)(10,44)(11,41)(12,46)(13,43)(14,48)(15,45)(16,42)(25,40)(26,37)(27,34)(28,39)(29,36)(30,33)(31,38)(32,35), (2,23,6,19)(3,7)(4,21,8,17)(9,13)(10,44,14,48)(12,42,16,46)(18,22)(26,33,30,37)(27,31)(28,39,32,35)(36,40)(41,45) );

G=PermutationGroup([[(1,38,11),(2,39,12),(3,40,13),(4,33,14),(5,34,15),(6,35,16),(7,36,9),(8,37,10),(17,26,44),(18,27,45),(19,28,46),(20,29,47),(21,30,48),(22,31,41),(23,32,42),(24,25,43)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)], [(1,22),(2,19),(3,24),(4,21),(5,18),(6,23),(7,20),(8,17),(9,47),(10,44),(11,41),(12,46),(13,43),(14,48),(15,45),(16,42),(25,40),(26,37),(27,34),(28,39),(29,36),(30,33),(31,38),(32,35)], [(2,23,6,19),(3,7),(4,21,8,17),(9,13),(10,44,14,48),(12,42,16,46),(18,22),(26,33,30,37),(27,31),(28,39,32,35),(36,40),(41,45)]])

66 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E4F4G4H4I6A6B6C···6H8A···8H12A12B12C12D12E···12J12K···12R24A···24P
order1222233444444444666···68···81212121212···1212···1224···24
size1122211112224444112···24···411112···24···44···4

66 irreducible representations

dim111111111111222244
type++++-
imageC1C2C2C3C4C4C4C6C6C12C12C12D4Q8C3×D4C3×Q8M4(2)⋊4C4C3×M4(2)⋊4C4
kernelC3×M4(2)⋊4C4C3×C42⋊C2C6×M4(2)M4(2)⋊4C4C3×C22⋊C4C2×C24C3×M4(2)C42⋊C2C2×M4(2)C22⋊C4C2×C8M4(2)C2×C12C2×C12C2×C4C2×C4C3C1
# reps112244424888316224

Matrix representation of C3×M4(2)⋊4C4 in GL4(𝔽73) generated by

8000
0800
0080
0008
,
002746
00046
17200
27200
,
72000
71100
00720
00711
,
17200
07200
00721
00711
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[0,0,1,2,0,0,72,72,27,0,0,0,46,46,0,0],[72,71,0,0,0,1,0,0,0,0,72,71,0,0,0,1],[1,0,0,0,72,72,0,0,0,0,72,71,0,0,1,1] >;

C3×M4(2)⋊4C4 in GAP, Magma, Sage, TeX

C_3\times M_4(2)\rtimes_4C_4
% in TeX

G:=Group("C3xM4(2):4C4");
// GroupNames label

G:=SmallGroup(192,150);
// by ID

G=gap.SmallGroup(192,150);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,344,3027,2111,124]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^8=c^2=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^5,d*b*d^-1=b*c,d*c*d^-1=b^4*c>;
// generators/relations

׿
×
𝔽