Extensions 1→N→G→Q→1 with N=C2 and Q=C2×C8⋊S3

Direct product G=N×Q with N=C2 and Q=C2×C8⋊S3
dρLabelID
C22×C8⋊S396C2^2xC8:S3192,1296


Non-split extensions G=N.Q with N=C2 and Q=C2×C8⋊S3
extensionφ:Q→Aut NdρLabelID
C2.1(C2×C8⋊S3) = C42.282D6central extension (φ=1)96C2.1(C2xC8:S3)192,244
C2.2(C2×C8⋊S3) = C4×C8⋊S3central extension (φ=1)96C2.2(C2xC8:S3)192,246
C2.3(C2×C8⋊S3) = C2×Dic3⋊C8central extension (φ=1)192C2.3(C2xC8:S3)192,658
C2.4(C2×C8⋊S3) = C2×C24⋊C4central extension (φ=1)192C2.4(C2xC8:S3)192,659
C2.5(C2×C8⋊S3) = C2×D6⋊C8central extension (φ=1)96C2.5(C2xC8:S3)192,667
C2.6(C2×C8⋊S3) = C2412Q8central stem extension (φ=1)192C2.6(C2xC8:S3)192,238
C2.7(C2×C8⋊S3) = C86D12central stem extension (φ=1)96C2.7(C2xC8:S3)192,247
C2.8(C2×C8⋊S3) = Dic3.M4(2)central stem extension (φ=1)96C2.8(C2xC8:S3)192,278
C2.9(C2×C8⋊S3) = D6⋊M4(2)central stem extension (φ=1)48C2.9(C2xC8:S3)192,285
C2.10(C2×C8⋊S3) = C3⋊C826D4central stem extension (φ=1)96C2.10(C2xC8:S3)192,289
C2.11(C2×C8⋊S3) = C42.198D6central stem extension (φ=1)192C2.11(C2xC8:S3)192,390
C2.12(C2×C8⋊S3) = C42.202D6central stem extension (φ=1)96C2.12(C2xC8:S3)192,394
C2.13(C2×C8⋊S3) = C12⋊M4(2)central stem extension (φ=1)96C2.13(C2xC8:S3)192,396
C2.14(C2×C8⋊S3) = C122M4(2)central stem extension (φ=1)96C2.14(C2xC8:S3)192,397
C2.15(C2×C8⋊S3) = C2433D4central stem extension (φ=1)96C2.15(C2xC8:S3)192,670

׿
×
𝔽