Copied to
clipboard

G = C86D12order 192 = 26·3

3rd semidirect product of C8 and D12 acting via D12/C12=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C86D12, C2426D4, C124M4(2), C42.257D6, (C4×C8)⋊14S3, D6⋊C81C2, C6.5(C4×D4), (C4×C24)⋊25C2, C31(C86D4), D6⋊C4.1C4, C12⋊C82C2, C2.8(C4×D12), C42(C8⋊S3), (C4×D12).2C2, (C2×D12).6C4, C6.4(C8○D4), C4.75(C2×D12), (C2×C8).283D6, C4⋊Dic3.7C4, C2.7(C8○D12), C12.295(C2×D4), C6.4(C2×M4(2)), C4.126(C4○D12), C12.242(C4○D4), (C4×C12).324C22, (C2×C12).806C23, (C2×C24).343C22, C2.7(C2×C8⋊S3), (C2×C8⋊S3)⋊10C2, C22.95(S3×C2×C4), (C2×C4).104(C4×S3), (C2×C12).221(C2×C4), (C2×C3⋊C8).187C22, (C22×S3).9(C2×C4), (S3×C2×C4).175C22, (C2×C6).61(C22×C4), (C2×C4).748(C22×S3), (C2×Dic3).11(C2×C4), SmallGroup(192,247)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C86D12
C1C3C6C12C2×C12S3×C2×C4C4×D12 — C86D12
C3C2×C6 — C86D12
C1C2×C4C4×C8

Generators and relations for C86D12
 G = < a,b,c | a8=b12=c2=1, ab=ba, cac=a5, cbc=b-1 >

Subgroups: 312 in 122 conjugacy classes, 55 normal (33 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, S3, C6, C8, C8, C2×C4, C2×C4, D4, C23, Dic3, C12, C12, C12, D6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), C22×C4, C2×D4, C3⋊C8, C24, C24, C4×S3, D12, C2×Dic3, C2×C12, C22×S3, C4×C8, C22⋊C8, C4⋊C8, C4×D4, C2×M4(2), C8⋊S3, C2×C3⋊C8, C4⋊Dic3, D6⋊C4, C4×C12, C2×C24, S3×C2×C4, C2×D12, C86D4, C12⋊C8, D6⋊C8, C4×C24, C4×D12, C2×C8⋊S3, C86D12
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, D6, M4(2), C22×C4, C2×D4, C4○D4, C4×S3, D12, C22×S3, C4×D4, C2×M4(2), C8○D4, C8⋊S3, S3×C2×C4, C2×D12, C4○D12, C86D4, C4×D12, C2×C8⋊S3, C8○D12, C86D12

Smallest permutation representation of C86D12
On 96 points
Generators in S96
(1 62 39 90 20 36 77 60)(2 63 40 91 21 25 78 49)(3 64 41 92 22 26 79 50)(4 65 42 93 23 27 80 51)(5 66 43 94 24 28 81 52)(6 67 44 95 13 29 82 53)(7 68 45 96 14 30 83 54)(8 69 46 85 15 31 84 55)(9 70 47 86 16 32 73 56)(10 71 48 87 17 33 74 57)(11 72 37 88 18 34 75 58)(12 61 38 89 19 35 76 59)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 12)(2 11)(3 10)(4 9)(5 8)(6 7)(13 14)(15 24)(16 23)(17 22)(18 21)(19 20)(25 72)(26 71)(27 70)(28 69)(29 68)(30 67)(31 66)(32 65)(33 64)(34 63)(35 62)(36 61)(37 40)(38 39)(41 48)(42 47)(43 46)(44 45)(49 88)(50 87)(51 86)(52 85)(53 96)(54 95)(55 94)(56 93)(57 92)(58 91)(59 90)(60 89)(73 80)(74 79)(75 78)(76 77)(81 84)(82 83)

G:=sub<Sym(96)| (1,62,39,90,20,36,77,60)(2,63,40,91,21,25,78,49)(3,64,41,92,22,26,79,50)(4,65,42,93,23,27,80,51)(5,66,43,94,24,28,81,52)(6,67,44,95,13,29,82,53)(7,68,45,96,14,30,83,54)(8,69,46,85,15,31,84,55)(9,70,47,86,16,32,73,56)(10,71,48,87,17,33,74,57)(11,72,37,88,18,34,75,58)(12,61,38,89,19,35,76,59), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14)(15,24)(16,23)(17,22)(18,21)(19,20)(25,72)(26,71)(27,70)(28,69)(29,68)(30,67)(31,66)(32,65)(33,64)(34,63)(35,62)(36,61)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,88)(50,87)(51,86)(52,85)(53,96)(54,95)(55,94)(56,93)(57,92)(58,91)(59,90)(60,89)(73,80)(74,79)(75,78)(76,77)(81,84)(82,83)>;

G:=Group( (1,62,39,90,20,36,77,60)(2,63,40,91,21,25,78,49)(3,64,41,92,22,26,79,50)(4,65,42,93,23,27,80,51)(5,66,43,94,24,28,81,52)(6,67,44,95,13,29,82,53)(7,68,45,96,14,30,83,54)(8,69,46,85,15,31,84,55)(9,70,47,86,16,32,73,56)(10,71,48,87,17,33,74,57)(11,72,37,88,18,34,75,58)(12,61,38,89,19,35,76,59), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,14)(15,24)(16,23)(17,22)(18,21)(19,20)(25,72)(26,71)(27,70)(28,69)(29,68)(30,67)(31,66)(32,65)(33,64)(34,63)(35,62)(36,61)(37,40)(38,39)(41,48)(42,47)(43,46)(44,45)(49,88)(50,87)(51,86)(52,85)(53,96)(54,95)(55,94)(56,93)(57,92)(58,91)(59,90)(60,89)(73,80)(74,79)(75,78)(76,77)(81,84)(82,83) );

G=PermutationGroup([[(1,62,39,90,20,36,77,60),(2,63,40,91,21,25,78,49),(3,64,41,92,22,26,79,50),(4,65,42,93,23,27,80,51),(5,66,43,94,24,28,81,52),(6,67,44,95,13,29,82,53),(7,68,45,96,14,30,83,54),(8,69,46,85,15,31,84,55),(9,70,47,86,16,32,73,56),(10,71,48,87,17,33,74,57),(11,72,37,88,18,34,75,58),(12,61,38,89,19,35,76,59)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14),(15,24),(16,23),(17,22),(18,21),(19,20),(25,72),(26,71),(27,70),(28,69),(29,68),(30,67),(31,66),(32,65),(33,64),(34,63),(35,62),(36,61),(37,40),(38,39),(41,48),(42,47),(43,46),(44,45),(49,88),(50,87),(51,86),(52,85),(53,96),(54,95),(55,94),(56,93),(57,92),(58,91),(59,90),(60,89),(73,80),(74,79),(75,78),(76,77),(81,84),(82,83)]])

60 conjugacy classes

class 1 2A2B2C2D2E 3 4A4B4C4D4E4F4G4H4I4J6A6B6C8A···8H8I8J8K8L12A···12L24A···24P
order122222344444444446668···8888812···1224···24
size1111121221111222212122222···2121212122···22···2

60 irreducible representations

dim111111111222222222222
type+++++++++++
imageC1C2C2C2C2C2C4C4C4S3D4D6D6M4(2)C4○D4D12C4×S3C8○D4C8⋊S3C4○D12C8○D12
kernelC86D12C12⋊C8D6⋊C8C4×C24C4×D12C2×C8⋊S3C4⋊Dic3D6⋊C4C2×D12C4×C8C24C42C2×C8C12C12C8C2×C4C6C4C4C2
# reps112112242121242444848

Matrix representation of C86D12 in GL4(𝔽73) generated by

27000
02700
00706
00673
,
0100
72000
001466
0077
,
0100
1000
00759
006666
G:=sub<GL(4,GF(73))| [27,0,0,0,0,27,0,0,0,0,70,67,0,0,6,3],[0,72,0,0,1,0,0,0,0,0,14,7,0,0,66,7],[0,1,0,0,1,0,0,0,0,0,7,66,0,0,59,66] >;

C86D12 in GAP, Magma, Sage, TeX

C_8\rtimes_6D_{12}
% in TeX

G:=Group("C8:6D12");
// GroupNames label

G:=SmallGroup(192,247);
// by ID

G=gap.SmallGroup(192,247);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,253,120,758,58,136,6278]);
// Polycyclic

G:=Group<a,b,c|a^8=b^12=c^2=1,a*b=b*a,c*a*c=a^5,c*b*c=b^-1>;
// generators/relations

׿
×
𝔽